Mapping General Residue theorems to IR-equations for NMHV amplitudes in $\mathcal{N}=4$ SYM

Johannes Brödel in collaboration with Song He

Leibniz Universität Hannover
and
Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam

Nordic String Theory Meeting, Hannover
February 23rd, 2010

Amplitudes in $\mathcal{N}=4$ SYM

- X all tree-level amplitudes known

$\left[\begin{array}{c}\text { Bern Dixon } \\ \text { Kosower }\end{array}\right] \begin{array}{r}\text { Drummond Henn } \\ \text { Korchemsky Sokatche }\end{array}$ one-loop amplitudes known
some results available, but no general (supersymmetric) form known
[Bens Dixon Kosower Raiban [Versu]
- infrared behaviour well explored for one-loop amplitudes
- two-loop: no integral basis singled out, infrared behaviour for single amplitudes known.

Conventions:

- Kinematical invariants:

$$
\begin{aligned}
& s_{i i+1} \ldots i+m=\left(p_{i}+\ldots+p_{i+m}\right)^{2} \\
& s_{i j}=\langle i j\rangle[i j]=2 k_{i} \cdot k_{j} \\
& p^{\alpha \dot{\alpha}}=p_{\mu}\left(\sigma^{\alpha \dot{\alpha}}\right)^{\mu}, p_{\mu} p^{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right) \\
& p^{\alpha \dot{\alpha}}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}},\langle i j\rangle=\lambda_{i}^{\alpha} \lambda_{j \alpha},[i j]=\tilde{\lambda}_{i \dot{\alpha}} \tilde{\lambda}_{j}^{\dot{\alpha}}
\end{aligned}
$$

- Spinor helicity formalism: $p^{\alpha \dot{\alpha}}=p_{\mu}\left(\sigma^{\alpha \dot{\alpha}}\right)^{\mu}, p_{\mu} p^{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$

Infrared singularities at one loop

- consistency equations for infrared divergences

$$
\left.M^{1-\text { loop }}\right|_{I R}=\left.\sum_{i} C_{i} I^{i}\right|_{I R}=-\frac{1}{\epsilon^{2}} \sum_{i=1}^{n}\left(-s_{i, i+1}\right)^{-\epsilon} M^{\text {tree }}
$$

in $D=4-\epsilon$.

- IR-divergent part of the integral basis:

$$
\begin{aligned}
& I^{1 \mathrm{~m}}(p, q, r, P)=-\frac{1}{\epsilon^{2}}\left((-s)^{-\epsilon}+(-t)^{-\epsilon}-\left(-P^{2}\right)^{-\epsilon}\right) \\
& I^{2 \mathrm{me}}(p, P, q, Q)=-\frac{1}{\epsilon^{2}}\left((-s)^{-\epsilon}+(-t)^{-\epsilon}-\left(-P^{2}\right)^{-\epsilon}-\left(-Q^{2}\right)^{-\epsilon}\right) \\
& I^{2 \mathrm{mh}}(p, q, P, Q)=-\frac{1}{\epsilon^{2}}\left(\frac{1}{2}(-s)^{-\epsilon}+(-t)^{-\epsilon}-\frac{1}{2}\left(-P^{2}\right)^{-\epsilon}-\frac{1}{2}\left(-Q^{2}\right)^{-\epsilon}\right) \\
& I^{3 \mathrm{~m}}(p, P, R, Q)=-\frac{1}{\epsilon^{2}}\left(\frac{1}{2}(-s)^{-\epsilon}+\frac{1}{2}(-t)^{-\epsilon}-\frac{1}{2}\left(-P^{2}\right)^{-\epsilon}-\frac{1}{2}\left(-Q^{2}\right)^{-\epsilon}\right),
\end{aligned}
$$

where $s=K_{1}+K_{2}, t=K_{2}+K_{3}$ for $I\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$.

- complicated identities in spinor-helicity language, however, easy in terms of residua in the Grassmanian formulation

Leading singularities

- '60s S-Matrix (Rutgers talk): analytic functional of kinematic invariants
- '90s: revival of the idea: unitarity based methods

- leading singularities agree with rational functions C_{i}
- tree amplitude is a leading singularity as well, two versions related by parity: $A_{\mathrm{BCFW}}=A_{\mathrm{P} \text { (BCFW) }}$

$$
\begin{aligned}
& M_{\text {BCFW }}^{+-+-+-}=\left(1+g^{2}+g^{4}\right)\left[\frac{\langle 46\rangle^{4}[13]^{4}}{[12][23]\langle 45\rangle\langle 56\rangle\left(p_{4}+p_{5}+p_{6}\right)^{2}} \times \frac{1}{\langle 6| 5+4 \mid 3]\langle 4| 5+6 \mid 1]}\right] \\
& M_{\mathrm{P}(\mathrm{BCFW})}^{+-+-+-}=\left(1+g^{2}+g^{4}\right)\left[\frac{[3|(2+4)| 6\rangle^{4}}{[23][34]\langle 56\rangle\langle 61\rangle\left(p_{5}+p_{6}+p_{1}\right)^{2}} \times \frac{1}{\langle 1| 6+5 \mid 4]\langle 5| 6+1 \mid 2]}\right]
\end{aligned}
$$

- completely nontrivial identity in spinor helicity formalism: different formulation?

Grassmanian formulation

The Grassmanian functional

$$
\begin{gathered}
\mathcal{L}_{n ; k}\left(Z_{a}\right)=\int \frac{d^{k \times n} C_{\alpha a}}{(12 \cdots k)(23 \cdots(k+1)) \cdots(n 1 \cdots(k-1))} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left(C_{\alpha a} Z_{a}\right) . \\
\alpha=1 . . k, a=1 \ldots n, \quad \text { minors: }\left(m_{1} \cdots m_{k}\right) \equiv \varepsilon^{\alpha_{1} \cdots \alpha_{k}} C_{\alpha_{1} m_{1}} \cdots C_{\alpha_{k} m_{k}}
\end{gathered}
$$

can be brought into a more accessible form

$$
\mathcal{L}_{n ; k}=\delta^{4}\left(\sum_{a} p_{a}\right) J(\lambda, \tilde{\lambda}) \int \frac{d^{(k-2) \times(n-k-2)} \tau}{[(12 \cdots k)(23 \cdots(k+1)) \cdots(n 1 \cdots(k-1))](\tau)} \prod_{I} \delta^{4}\left(\eta_{I}+c_{I i}(\tau) \eta_{i}\right)
$$

where $c_{I i}$ are solutions to the kinematical constraints

$$
\lambda_{i}-c_{I i}(\tau) \lambda_{I}=0, \quad \tilde{\lambda}_{I}+c_{I i}(\tau) \tilde{\lambda}_{i}=0
$$

- residue: one complex variable:
multiple complex variables: " $\frac{1}{0^{(k-2) \times(n-k-2)}}$ "
- Labelling by vanishing minors, i.e. : $\{1,4,7\}$ totally antisymmetric: $\{i, j, k\}=-\{i, k, j\}$
NMHV-sector: integration variables $\rightarrow n-5$ labels

Grassmanian conjecture

- Conjecture: leading singularities are linear combination of residua
- 3-Mass Box corresponds to exactly one residue
[Arkan:-Hamed Cachazo] Cheung Kaplan
$\left[\begin{array}{c}\text { Drummond Men } \\ \text { Korchemsky Sokatchev }\end{array}\right]$

$$
n=8, k=3
$$

$\{1,6,7\}$

$$
C_{r, r+1, r+2, r+3}^{1 m}=C_{r+2, r+3, r, r+1}^{2 m e}+C_{r+1, r+2, r+3, r}^{3 m}
$$

$\{7,1,8\}+\{5,1,8\}$
$+\{5,1,6\}+\{3,1,8\}$
$+\{3,1,6\}+\{3,1,4\}$
$+\{4,5,6\}$
$+\{4,5,6\}$

$$
C_{r, r+1, r+2, s}^{2 \mathrm{mh}}=C_{r+1, r+2, s, r}^{3 m}+C_{r, r+1, r+2, s}^{3 m}
$$

$\{3,4,8\}$
$+\{4,3,5\}$

$$
C_{r, r+1, s, s+1}^{2 m e}=\sum_{\substack{u, v \\ u \geq r \\ u+2 \leq v \leq s}} C_{r, r+1, u, v}^{3 m}+\sum_{\substack{u, v \\ u \geq s+2 \\ u+2 \leq v \leq r}} C_{s, s+1, u, v}^{3 m}
$$

$\{7,1,8\}$
$+\{5,1,8\}$
$+\{3,1,8\}$

Classification of residua

- How to classify residua? invariant label: $\{1,3,8\} \stackrel{n=8}{=}\{251\}$

n	invariant label
7	$\{16\},\{25\},\{34\}$
8	$\{116\},\{125\},\{134\},\{233\},\{224\}$
9	$\{116\},\{1125\},\{1134\},\{1223\},\{1224\},\{2223\}$
10	$\{11116\},\{11125\},\{1134\},\{11223\},\{11224\},\{12223\},\{22222\}$
\vdots	\vdots
n	$\{1 \ldots 16\},\{1 \ldots 134\},\{1 \ldots 1233\},\{1 \ldots 1224\},\{1 \ldots 12223\},\{1 \ldots 122222\}$

- NMHV-sector: all leading singularities occur at maximally 3 loops ($n \geq 10$) $n=7$: 1-loop, $n=8,9$: 2-loop,
- Speculation: even numbers in inv. label: $1 \Rightarrow 1$-loop, $3 \Rightarrow 2$-loop, $5 \Rightarrow 3$-loop

3 m	2 mh	2me	1 m
$\begin{aligned} & \{125\} \\ & \{233\} \end{aligned}$	$\begin{aligned} & \{134\}+\{116\} \\ & \{134\}+\{134\} \end{aligned}$	$\begin{gathered} \{116\}+\{116\} \\ \{125\}+\{134\}+\{116 \end{gathered}$	all types

Generalized Residue Theorem (GRT)

- residua are related by multimdimensional version of Cauchy's theorem (GRT):

$$
\sum_{j=1}^{n}\left\{j, i_{1}, \ldots, i_{n-6}\right\}=0 .
$$

- Conjecture: IR-equations related to GRTs

Example: $n=7, s_{12}$:

$$
\begin{gathered}
C_{1234}^{1 m}+C_{7123}^{1 m}+\frac{1}{2} C_{1235}^{2 m h}-\frac{1}{2} C_{6713}^{2 m h}+\frac{1}{2} C_{1236}^{2 m h}-\frac{1}{2} C_{3451}^{2 m h}-C_{7134}^{2 m e}-\frac{1}{2} C_{3461}^{3 m}-\frac{1}{2} C_{7135}^{3 m} \\
(\{7,1\}+\{5,1\}+\{3,1\}+\{4,5\})+(\{6,7\}+\{4,7\}+\{2,7\}+\{3,4\}) \\
+\frac{1}{2}(\{2,5\}+\{5,6\})-\frac{1}{2}(\{7,3\}+\{3,4\})+\frac{1}{2}(\{2,3\}+\{3,6\})-\frac{1}{2}(\{4,5\}+\{5,1\}) \\
-(\{7,1\})-\frac{1}{2}(\{3,1\})-\frac{1}{2}(\{7,5\}) \\
\{2,3\}+\{2,5\}+\{2,7\}+\{4,5\}+\{4,7\}+\{6,7\}
\end{gathered}
$$

General form of the tree-amplitude:

$$
\begin{aligned}
M_{\mathrm{BCFW}}^{\text {tree }} & =\mathcal{E} \star \mathcal{O} \star \mathcal{E} \star \cdots \\
M_{\mathrm{P}(\mathrm{BCFW})}^{\text {tre }} & =(-1)^{n} \mathcal{O} \star \mathcal{E} \star \mathcal{O} \star \cdots
\end{aligned}
$$

where $\mathcal{E}=2+4+6+\cdots$ and $\mathcal{O}=1+3+5+\cdots$.

One more illustrative example: $n=9, s_{1234}$:

$$
\begin{aligned}
& -\frac{1}{2} C_{1235}^{2 m h}-\frac{1}{2} C_{5671}^{2 m h}+C_{9125}^{2 m h}+C_{4561}^{2 m h}-\frac{1}{2} C_{8915}^{2 m h}-\frac{1}{2} C_{3451}^{2 m h}-C_{1245}^{2 m e}-\frac{1}{2} C_{5681}^{3 m}+\frac{1}{2} C_{9135}^{3 m} \\
& +\frac{1}{2} C_{4571}^{3 m}+C_{1256}^{3 m}-C_{5691}^{3 m}+C_{9145}^{3 m}+\frac{1}{2} C_{1257}^{3 m}+\frac{1}{2} C_{4581}^{3 m}+\frac{1}{2} C_{1258}^{3 m}+\frac{1}{2} C_{5613}^{3 m}-\frac{1}{2} C_{9157}^{3 m}=0
\end{aligned}
$$

translates (without using GRTs) into

$$
\begin{aligned}
\frac{1}{2} & (-\{1,2,3,5\}-\{1,2,3,7\}-\{1,2,4,5\}-\{1,2,4,7\} \\
& +\{1,2,5,6\}+\{1,2,5,8\}+\{1,2,5,9\}-\{1,2,6,7\} \\
& +\{1,2,7,8\}+\{1,2,7,9\}-\{1,5,6,7\}-\{2,5,6,7\} \\
& -\{3,5,6,7\}-\{4,5,6,7\}+\{5,6,7,8\}+\{5,6,7,9\})=0
\end{aligned}
$$

One more illustrative example: $n=9, s_{1234}$:

$$
\begin{aligned}
& -\frac{1}{2} C_{1235}^{2 m h}-\frac{1}{2} C_{5671}^{2 m h}+C_{9125}^{2 m h}+C_{4561}^{2 m h}-\frac{1}{2} C_{8915}^{2 m h}-\frac{1}{2} C_{3451}^{2 m h}-C_{1245}^{2 m e}-\frac{1}{2} C_{5681}^{3 m}+\frac{1}{2} C_{9135}^{3 m} \\
& +\frac{1}{2} C_{4571}^{3 m}+C_{1256}^{3 m}-C_{5691}^{3 m}+C_{9145}^{3 m}+\frac{1}{2} C_{1257}^{3 m}+\frac{1}{2} C_{4581}^{3 m}+\frac{1}{2} C_{1258}^{3 m}+\frac{1}{2} C_{5613}^{3 m}-\frac{1}{2} C_{9157}^{3 m}=0
\end{aligned}
$$

translates (without using GRTs) into

$$
\begin{gathered}
\frac{1}{2}(-\{1,2,3,5\}-\{1,2,3,7\}-\{1,2,4,5\}-\{1,2,4,7\} \\
+\{1,2,5,6\}+\{1,2,5,8\}+\{1,2,5,9\}-\{1,2,6,7\} \\
+\{1,2,7,8\}+\{1,2,7,9\}-\{1,5,6,7\}-\{2,5,6,7\} \\
-\{3,5,6,7\}-\{4,5,6,7\}+\{5,6,7,8\}+\{5,6,7,9\})=0 \\
(1,2,5)+(1,2,7)+(5,6,7)=0
\end{gathered}
$$

Mapping IR-equations to general residue theorems

particles	kin. inv	sources
7	s_{123}	$0=(1)$
8	s_{123}	$0=(1,4)+(1,6)$
	s_{1234}	$0=(1,2)+(5,6)$
9	s_{123}	$0=(1,4,5)+(1,4,7)+(1,6,7)$
	s_{1234}	$0=(1,2,5)+(1,2,7)+(5,6,7)$
10	s_{123}	$0=(1,4,5,6)+(1,4,5,8)+(1,4,7,8)+(1,6,7,8)$
	s_{1234}	$0=(1,2,5,6)+(1,2,5,8)+(1,2,7,8)+(5,6,7,8)$
	s_{12345}	$0=(1,2,3,6)+(1,2,3,8)+(1,6,7,8)+(3,6,7,8)$
\vdots	\vdots	\vdots
12	s_{123}	$0=(1,4,5,6,7,8)+(1,4,5,6,7,10)+(1,4,5,6,9,10)$
		$+(1,4,5,8,9,10)+(1,4,7,8,9,10)+(1,6,7,8,9,10)$
	s_{1234}	$0=(1,2,5,6,7,8)+(1,2,5,6,7,10)+(1,2,5,6,9,10)$
		$+(1,2,5,8,9,10)+(1,2,7,8,9,10)+(5,6,7,8,9,10)$
	s_{12345}	$0=(1,2,3,6,7,8)+(1,2,3,6,7,10)+(1,2,3,6,9,10)$
		$+(1,2,3,8,9,10)+(1,6,7,8,9,10)+(3,6,7,8,9,10)$
	s_{123456}	$0=(1,2,3,4,7,8)+(1,2,3,4,7,10)+(1,2,3,4,9,10)$
		$+(1,2,7,8,9,10)+(1,4,7,8,9,10)+(3,4,7,8,9,10)$

Mapping IR-equations to general residue theorems

For s_{123}, the general rule reads:

$$
1 \star(4+6) \star(5+7) \star \cdots \star((n-4)+(n-2))=0,
$$

while for $s_{12 \ldots m}, m>3$:

$$
\begin{array}{r}
(1,2, \ldots, m-2) \star((m+1)+(m+3)) \star((m+2)+(m+4)) \star \cdots \star((n-4)+(n-2)) \\
+(1+3) \star \cdots \star((m-5)+(m-3)) \star((m-4)+(m-2)) \star((m+1), \ldots,(n-3),(n-2))=0,
\end{array}
$$

where all others follow from cyclic invariance.

"Remarkable" identities...

$$
\begin{aligned}
M_{\mathrm{BCFW}} & =M_{\mathrm{P}(\mathrm{BCFW})} \\
\mathcal{E} \star \mathcal{O} \star \mathcal{E} \star \cdots & =(-1)^{(n-5)} \mathcal{O} \star \mathcal{E} \star \mathcal{O} \star \cdots
\end{aligned}
$$

can be obtained from adding GRTs with all sourceterms of the form oe:

$$
(1,2),(1,4),(1,6),(1,8),(3,4),(3,6),(3,8),(5,6),(5,8) \text { und }(7,8)
$$

Example for $n=8$:

$$
\begin{aligned}
& (\{2,3,4\}+\{2,3,6\}+\{2,3,8\}+\{2,5,6\}+\{2,5,8\} \\
& \quad+\{2,7,8\}+\{4,5,6\}+\{4,5,8\}+\{4,7,8\}+\{6,7,8\}) \\
& \quad=-(\{1,2,3\}+\{1,2,5\}+\{1,2,7\}+\{1,4,5\}+\{1,4,7\} \\
& \quad+\{1,6,7\}+\{3,4,5\}+\{3,4,7\}+\{3,6,7\}+\{5,6,7\})
\end{aligned}
$$

Parity-invariance: same result from adding all sourceterms eo.

Outlook and open questions

- nicely accessible formulation of one-loop IR-equations in terms of GRTs (only NMHV-sector)
- a good language for $N^{p} M H V, p>1$ has to be found - Plücker-labeling not sufficient
- ($\left.\begin{array}{c}n \\ n-5\end{array}\right)$ residua are still redundant - after employing all GRTs, the minimal set has dimension $\binom{n-1}{n-5}$
- for the NMHV-sector, the tree-amplitude is the only non-IR-divergent quantity: all other divergences should be related to it. Is it possible to retrieve information about higher-loop IR-divergences? General structure studied in [Anastasiou Bern]
- Integral basis for higher-loop amplitudes?

Outlook and open questions

- nicely accessible formulation of one-loop IR-equations in terms of GRTs (only NMHV-sector)
- a good language for $N^{p} M H V, p>1$ has to be found - Plücker-labeling not sufficient
- ($\left.\begin{array}{c}n \\ n-5\end{array}\right)$ residua are still redundant - after employing all GRTs, the minimal set has dimension $\binom{n-1}{n-5}$
- for the NMHV-sector, the tree-amplitude is the only non-IR-divergent quantity: all other divergences should be related to it. Is it possible to retrieve information about higher-loop IR-divergences? General structure studied in [Anastasiou Bern]
- Integral basis for higher-loop amplitudes?

THANKS!

