Cut-and-join operators and $\mathcal{N}=4$ SYM

T.W. Brown

DESY

Nordic String Meeting, Hannover, February 2010
1002.2099 [hep-th]

General Programme

- Study $\frac{1}{N}$ corrections to $\mathcal{N}=4, d=4$ super Yang-Mills with guage group $U(N)$.
- Multi-trace operators with $\Delta_{0} \equiv n<N^{\frac{1}{2}}$. Organise into:
- Representations of the global symmetry group;
- Operators with fixed trace structure, e.g. single/double trace.
- Focus on theory at tree level and one loop.
- Messy mixing problem;
- Want to find operators with well-defined conformal dimensions;
- Is there a string dual to the free gauge theory?

Two different attitudes

Two different attitudes to $\frac{1}{N}$ corrections, depending on coupling.

- For free theory, $\lambda=0$, treat $\frac{1}{N}$ as a string coupling ordering the non-planar expansion of correlation functions. Multi-trace operators identified with multi-string states.
- For $\lambda>0$ the correct string expansion is in $g_{s}=\frac{\lambda}{N}$. Treat $\frac{1}{N}$ corrections as a modification to the gauge theory/string theory state identification.

Review of half-BPS sector

Based on Vaman and Verline 0209215; Corley, Jevicki and Ramgoolam 0111222.
Trace structures of operators map to conjugacy classes of S_{n}.
E.g. for $\alpha=(123)(45)(6) \in S_{6}$

$$
\begin{aligned}
\operatorname{tr}\left(X^{3}\right) \operatorname{tr}\left(X^{2}\right) \operatorname{tr}(X) & =X_{i_{2}}^{i_{1}} X_{i_{3}}^{i_{2}} X_{i_{1}}^{i_{3}} X_{i_{5}}^{i_{4}} X_{i_{4}}^{i_{5}} X_{i_{6}}^{i_{6}} \\
& =X_{i_{\alpha(1)}}^{i_{1}} X_{i_{\alpha(2)}}^{i_{2}} X_{i_{\alpha(3)}}^{i_{3}} X_{i_{\alpha(4)}}^{i_{4}} X_{i_{\alpha(5)}}^{i_{5}} X_{i_{\alpha(6)}}^{i_{6}}
\end{aligned}
$$

Conjugacy classes labelled by partitions of n, e.g. $[3,2,1]$ here.

Two-point function given by cut-and-join operators

$$
\left\langle\operatorname{tr}\left(\alpha^{\prime} X^{\dagger n}\right) \operatorname{tr}\left(\alpha X^{n}\right)\right\rangle_{\text {non-planar }}=N^{n}\left\langle\alpha^{\prime}\right| \Omega_{n}|\alpha\rangle
$$

(We're dropping the spacetime dependence here and onwards.)

Cut-and-join operators

Basic cut-and-join operator is a sum over the transpositions in S_{n}

$$
\Sigma_{[2]}=\sum_{i<j}(i j)
$$

It cuts a single trace $/$ cycle $[n]=(123 \cdots n)$ into two

$$
\Sigma_{[2]}|n\rangle \sim\left|n_{1}, n_{2}\right\rangle
$$

It both joins a double trace and cuts it into three

$$
\Sigma_{[2]}\left|n_{1}, n_{2}\right\rangle \sim|n\rangle+\left|n_{1}, n_{2}, n_{3}\right\rangle
$$

Tree-level mixing given by

$$
\begin{aligned}
\Omega_{n} & =\sum_{\sigma \in S_{n}} \frac{1}{N^{T(\sigma)}} \sigma \\
& =1+\frac{1}{N} \Sigma_{[2]}+\frac{1}{N^{2}}\left(\Sigma_{[3]}+\Sigma_{[2,2]}\right)+\mathcal{O}\left(\frac{1}{N^{3}}\right)
\end{aligned}
$$

Inner product and full non-planar correlation function

The inner product is given by the leading planar two-point function

$$
\left\langle\alpha^{\prime} \mid \alpha\right\rangle \sim \delta_{\alpha^{\prime} \in[\alpha]}
$$

The leading term of the (extremal) three-point function

$$
\left\langle n_{1}, n_{2}\right|\left(\frac{1}{N} \Sigma_{[2]}\right)|n\rangle=\frac{n n_{1} n_{2}}{N}
$$

The first correction to the single-trace 2-p't f'n from the torus

$$
\langle n|\left(\frac{1}{N^{2}}\left[\Sigma_{[3]}+\Sigma_{[2,2]}\right]\right)|n\rangle=\frac{n}{N^{2}}\left[\binom{n}{3}+\binom{n}{4}\right]
$$

What do these numbers mean in a putative worldsheet theory?

Bunching of homotopic propagators

The $\Sigma_{[3]}$ term gives propagators on the torus bunched into 3 groups; $\Sigma_{[2,2]}$ gives propagators bunched into 4 groups.

In Gopakumar's model, each Σ_{C} gives a different skeleton graph of homotopically-bunched propagators for the relevant genus g.

Suggestively, these are Hurwitz numbers counting n-branched covers of $\mathbb{C} P^{1}$ by surfaces of genus g with three branch points, two labelled by the operators and the third by the cut-and-join Σ_{C}.

Two-dimensional factorisation of correlation functions

Another feature is that for large n the higher genus correlation functions factorise into planar 3-point functions, e.g. for torus

$$
\frac{1}{N^{2}}\left(\Sigma_{[3]}+\Sigma_{[2,2]}\right) \rightarrow \frac{1}{2}\left(\frac{1}{N} \Sigma_{[2]}\right)^{2}
$$

This is the result of the exponentiation of the tree-level mixer

$$
\begin{aligned}
\Omega_{n} & =\exp \left(\frac{1}{N} \Sigma_{[2]}-\frac{1}{2 N^{2}}\left[\binom{n}{2}+\Sigma_{[3]}\right]+\mathcal{O}\left(\frac{1}{N^{3}}\right)\right) \\
& \rightarrow \exp \left(\frac{1}{N} \Sigma_{[2]}\right)
\end{aligned}
$$

NB: additional terms subleading in $\frac{n^{2}}{N}$.

Multiple fields: a few simple examples I

Tracing the same field content for $U(2) \subset S U(4)_{R}$ rep $\Lambda=\square$ we sometimes have to 'twist' the trace to get a non-vanishing operator

where $\Phi^{p} \Phi_{p}=\epsilon^{p q} \Phi_{p} \Phi_{q}=[X, Y]$.

Multiple fields: a few simple examples II

Things also get complicated when for a given representation and trace structure there is more than one operator, e.g. for the $U(2)$ rep $\square \square \sim[X, Y][X, Y] X X$ with trace structure $[4,2]$

$$
\begin{gathered}
\operatorname{tr}([X, Y][X, Y]) \operatorname{tr}(X X) \\
\operatorname{tr}\left(X X \Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right)
\end{gathered}
$$

(remembering that $\Phi^{p} \Phi_{p}=\epsilon^{p q} \Phi_{p} \Phi_{q}=[X, Y]$).

Solution for multiple fields

For $U(2)$ sector organise n copies of fields $\{X, Y\}$ into reps

$$
V_{2}^{\otimes n}=\bigoplus_{|\Lambda|=n} V_{\Lambda}^{U(2)} \otimes V_{\Lambda}^{S_{n}}
$$

Can then write all multitrace operators as
$|\Lambda, M ; \alpha, \gamma\rangle \equiv \frac{1}{n!} \sum_{\sigma \in S_{n}} S_{a \gamma}^{\wedge, \alpha} B_{b \beta}^{\wedge, \vec{\mu}} D_{a b}^{\wedge}(\sigma) \operatorname{tr}(\sigma^{-1} \alpha \sigma \overbrace{X \cdots X}^{\mu_{1}} \overbrace{Y \cdots Y}^{\mu_{2}})$

- \wedge tells us the rep. of $U(2)$ (a two-row n-box Young diagram)
- M tells us the state within that rep.
- α is a partition of n giving the trace structure
- γ labels the multiplicity for this Λ and α; no. of values is

$$
\frac{1}{|\operatorname{Sym}(\alpha)|} \sum_{\rho \in \operatorname{Sym}(\alpha)} \chi_{\wedge}(\rho)
$$

Example operators

$$
\begin{aligned}
& |\Lambda=\square, M=H W S ; \alpha=[4], \gamma=1\rangle=\operatorname{tr}([X, Y][X, Y]) \\
& |\Lambda=\square, M=H W S ; \alpha=[2,2], \gamma=1\rangle=\operatorname{tr}\left(\Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right) \\
& \square \square, H W S ;[4,2], 1\rangle=\operatorname{tr}([X, Y][X, Y]) \operatorname{tr}(X X) \\
& \square \square, H W S ;[4,2], 2\rangle=\operatorname{tr}\left(X X \Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right) \\
& +\frac{1}{6} \operatorname{tr}([X, Y][X, Y]) \operatorname{tr}(X X)
\end{aligned}
$$

Inner product and non-planar 2-point function

The inner product (i.e. planar two-point function) is diagonal

$$
\left\langle\Lambda^{\prime}, M^{\prime} ; \alpha^{\prime}, \gamma^{\prime} \mid \Lambda, M ; \alpha, \gamma\right\rangle \propto \delta^{\Lambda \Lambda^{\prime}} \delta^{M M^{\prime}} \delta^{\alpha \alpha^{\prime}} \delta^{\gamma \gamma^{\prime}}
$$

As for the half-BPS sector, the cut-and-join operators give the full non-planar free two-point function

$$
\begin{aligned}
\left\langle\mathcal { O } ^ { \dagger } \left[\Lambda^{\prime}, M^{\prime} ; \alpha^{\prime},\right.\right. & \left.\left.\gamma^{\prime}\right] \mathcal{O}[\Lambda, M ; \alpha, \gamma]\right\rangle_{\text {non-planar }} \\
& =\delta^{\Lambda \Lambda^{\prime}} \delta^{M M^{\prime}} N^{n}\left\langle\Lambda, M ; \alpha^{\prime}, \gamma^{\prime}\right| \Omega_{n}|\Lambda, M ; \alpha, \gamma\rangle
\end{aligned}
$$

From $U(2)$ to $\operatorname{PSU}(2,2 \mid 4)$

This works automatically for $U(2) \rightarrow U\left(K_{1} \mid K_{2}\right)$. To extend these results for the free theory to the other fields of $\mathcal{N}=4$ SYM treat the infinite-dimensional singleton rep. of $\operatorname{PSU}(2,2 \mid 4)$ as the fundamental of $U(\infty \mid \infty)$. (The Λ are now unrestricted S_{n} reps, also known as the higher spin YT-pletons.)

However as soon as we turn on the coupling the $\operatorname{PSU}(2,2 \mid 4)$ group structure asserts itself. Each rep Λ breaks down into an infinite number of $\operatorname{PSU}(2,2 \mid 4)$ reps. This decomposition is tricky and not known in general. Using the technology of Schur-Weyl duality we can do this for e.g. $S O(6)$ and $S O(2,4)$.

One-loop

Analyse mixing with one-loop dilatation operator, e.g. $U(2)$ sector

$$
: \operatorname{tr}\left([X, Y]\left[\frac{\partial}{\partial X}, \frac{\partial}{\partial Y}\right]\right):
$$

Operators with anomalous dimensions have commutators $[X, Y$] within a trace. Label them $\left|\Lambda, M ; \alpha^{a}, \gamma^{a}\right\rangle$, e.g.

$$
\left.\square, H W S ;[4]^{a}, 1^{a}\right\rangle=\operatorname{tr}([X, Y][X, Y])
$$

$$
\left.\square \square, H W S ;[4,2]^{a}, 1^{a}\right\rangle=\operatorname{tr}([X, Y][X, Y]) \operatorname{tr}(X X)
$$

How do we find the quarter-BPS operators?

On general grounds the protected BPS operators must be orthogonal to those operators with anomalous dimensions in the full non-planar two-point function. So choose α^{q}, γ^{q} such that

$$
\left\langle\Lambda, M ; \alpha^{a}, \gamma^{a} \mid \Lambda, M ; \alpha^{q}, \gamma^{q}\right\rangle=0 \quad \forall a, q
$$

The $\frac{1}{4}$-BPS ops. are defined with the inverse of the tree-level mixer

$$
\frac{1}{4} \text { - } \mathrm{BPS}=\Omega_{n}^{-1}\left|\Lambda, M ; \alpha^{q}, \gamma^{q}\right\rangle
$$

for $\quad \Omega_{n}^{-1}=1-\frac{1}{N} \Sigma_{[2]}+\frac{1}{N^{2}}\left[\frac{n(n-1)}{2}+2 \Sigma_{[3]}+\Sigma_{[2,2]}\right]+\mathcal{O}\left(\frac{1}{N^{3}}\right)$

Quarter-BPS examples

$$
\begin{aligned}
\left.\Omega_{n}^{-1} \square, H W S ;[2,2]^{q}, 1^{q}\right\rangle= & \operatorname{tr}\left(\Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right) \\
& +\frac{2}{N} \operatorname{tr}([X, Y][X, Y]) \\
& -\frac{2}{N^{2}} \operatorname{tr}\left(\Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r}\right) \operatorname{tr}\left(\Phi_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{n}^{-1} & \square \\
= & \operatorname{tr}\left(X X \Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right)+\frac{1}{6} \operatorname{tr}([X, Y][X, Y]) \operatorname{tr}(X X) \\
& +\frac{8}{3 N} \operatorname{tr}\left(\Phi^{r} \Phi_{r} \Phi^{s} \Phi_{s} X X\right)-\frac{16}{3 N} \operatorname{tr}\left(\Phi^{r} \Phi^{s} \Phi_{r} \Phi_{s} X X\right) \\
& -\frac{4}{3 N} \operatorname{tr}\left(\Phi^{r} \Phi^{s}\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right) \operatorname{tr}(X X) \\
& -\frac{1}{N} \operatorname{tr}\left(\Phi^{r} \Phi^{s} X X\right) \operatorname{tr}\left(\Phi_{r}\right) \operatorname{tr}\left(\Phi_{s}\right)-\frac{1}{6 N} \operatorname{tr}\left(\Phi^{r} \Phi_{r} \Phi^{s} \Phi_{s}\right) \operatorname{tr}(X) \operatorname{tr}(X) \\
& -\frac{4}{N} \operatorname{tr}\left(\Phi^{r} \Phi^{s} X\right) \operatorname{tr}\left(\Phi_{r} \Phi_{s}\right) \operatorname{tr}(X)+\frac{2}{N} \operatorname{tr}\left(\Phi^{r} \Phi^{s} X\right) \operatorname{tr}\left(\Phi_{r} X\right) \operatorname{tr}\left(\Phi_{s}\right)+\mathcal{O}\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

Conclusions

- Full non-planar free theory has a universal structure given by cut-and-join operators, with many stringy features.
- Can we turn this into a concrete description of the dual string?
- Some features also appear in the weak coupling regime, at least in identifying the quarter-BPS operators.
- Does any of this apply to ops with anomalous dimensions?

