Cohomological Subsectors in Sigma Models on Superspaces

Constantin Candu

Hannover 2010

Deutsches Elektronen-Synchrotron A Research Center of the Helmholtz Association

990

T. Creutzig, V. Mitev, V. Schomerus hep-th/1001.1344

ヘロト ヘ週 ト ヘヨト ヘヨト

ъ

nac

ヘロト 人間 とくき とくきとう

ъ

nac

Motivation Observation

Calculation of some correlators in the σ -models on the l.h.s where mapped onto the correlators of the free theories on the r.h.s.:

σ -model	subsector
$S^{3 2} = \frac{\operatorname{OSp}(4 2)}{\operatorname{OSp}(3 2)}$	<i>S</i> ¹ or free compact boson [CC, Saleur, 08], [Mitev, Quela, Schomerus 08]
$\mathbb{C}P^{1 2} = \frac{\mathrm{U}(2 2)}{\mathrm{U}(1) \times \mathrm{U}(1 2)}$	$\mathbb{C}P^{0 1}$ or free symplectic fermions [CC, Read, Jacobsen Saleur 09], [CC, Mitev, Quella, Saleur, Schomerus 09]

ъ

ヘロト ヘアト ヘビト ヘビト

• How to characterize the set of fields in the $S^{3|2}$ and $\mathbb{C}P^{1|2} \sigma$ -models whose correlators can be computed within the simpler theories?

ヘロト 人間 トイヨト イヨト

= 900

- How to characterize the set of fields in the $S^{3|2}$ and $\mathbb{C}P^{1|2} \sigma$ -models whose correlators can be computed within the simpler theories?
- What is the exact connexion between the full theory and the subsector theory? Both field theories being σ -models, there must be a geometric construction connecting them.

イロト 不得 とうほう うほう

- How to characterize the set of fields in the $S^{3|2}$ and $\mathbb{C}P^{1|2} \sigma$ -models whose correlators can be computed within the simpler theories?
- What is the exact connexion between the full theory and the subsector theory? Both field theories being σ -models, there must be a geometric construction connecting them.
- How much of the structure (conformal invariance, integrability) of the subsector theory lifts to the full theory?

イロト 不得 とくほ とくほとう

- How to characterize the set of fields in the $S^{3|2}$ and $\mathbb{C}P^{1|2} \sigma$ -models whose correlators can be computed within the simpler theories?
- What is the exact connexion between the full theory and the subsector theory? Both field theories being σ -models, there must be a geometric construction connecting them.
- How much of the structure (conformal invariance, integrability) of the subsector theory lifts to the full theory?
- Is the existence of simplified subsectors a general feature of σ -models on G/G' superspaces? If yes, then are the simplified subsectors equivalent again to σ -models on H/H' superspace?

イロト 不得 トイヨト イヨト 二日

Target space cohomology

Finding the right approach Spin chains

$$\begin{aligned} \operatorname{OSp}(2N+2|2N) \operatorname{chain} V_{2N+2|2N}^{\otimes L} & \operatorname{GL}(N|N) \operatorname{chain} (V_{N|N} \otimes V^*_{N|N})^{\otimes L} \\ H_N^{\operatorname{OSp}} &= \operatorname{rep}_N(H_{\operatorname{Brauer}}) & H_N^{\operatorname{GL}} &= \operatorname{rep}_N(H_{\operatorname{Brauer}}^{\operatorname{walled}}) \\ H_{\operatorname{Brauer}} &= \sum E_{i,i+1} + wP_{i,i+1} & H_{\operatorname{Brauer}}^{\operatorname{walled}} &= \sum E_{i,i+1} + wP_{i,i+2} \\ \operatorname{have been extensively studied as discretizations of boundary } \sigma \operatorname{-models} \\ S^{2N+1|2N} &= \frac{\operatorname{OSp}(2N+2|2N)}{\operatorname{OSp}(2N+1|2N)} & \mathbb{C}P^{N-1|N} &= \frac{\operatorname{U}(N|N)}{\operatorname{U}(1) \times \operatorname{U}(N-1|N)} \\ \operatorname{[CC, Saleur 08]} & \mathbb{C}P^{N-1|N} &= \frac{\operatorname{U}(N|N)}{\operatorname{U}(1) \times \operatorname{U}(N-1|N)} \end{aligned}$$

ヘロト 人間 トイヨト イヨト

ъ

Target space cohomology

Finding the right approach Spin chains

$$\begin{split} & \operatorname{OSp}(2N+2|2N) \operatorname{chain} V_{2N+2|2N}^{\otimes L} & \operatorname{GL}(N|N) \operatorname{chain} (V_{N|N} \otimes V^*_{N|N})^{\otimes L} \\ & H_N^{\operatorname{OSp}} = \operatorname{rep}_N(H_{\operatorname{Brauer}}) & H_N^{\operatorname{GL}} = \operatorname{rep}_N(H_{\operatorname{Brauer}}^{\operatorname{walled}}) \\ & H_{\operatorname{Brauer}} = \sum E_{i,i+1} + wP_{i,i+1} & H_{\operatorname{Brauer}}^{\operatorname{walled}} = \sum E_{i,i+1} + wP_{i,i+2} \\ & \operatorname{have been extensively studied as discretizations of boundary } \sigma \operatorname{-models} \\ & S^{2N+1|2N} = \frac{\operatorname{OSp}(2N+2|2N)}{\operatorname{OSp}(2N+1|2N)} & \mathbb{C}P^{N-1|N} = \frac{\operatorname{U}(N|N)}{\operatorname{U}(1) \times \operatorname{U}(N-1|N)} \\ & [\operatorname{CC, Saleur 08]} & \mathbb{C}P^{N-1|N} = \frac{\operatorname{U}(N|N)}{\operatorname{U}(1) \times \operatorname{U}(N-1|N)} \\ & [\operatorname{CC, Read, Jacobsen, Saleur 09], [\operatorname{CC}, \\ & \operatorname{Creutzig, Mitev, Saleur, Schomerus 09]} \end{split}$$

Embedding of spectra spec $H_0 \subset \operatorname{spec} H_1 \subset \cdots \subset \operatorname{spec} H^{(walled)}_{\operatorname{Brauer}}$

イロト 不得 とうほう うほう

Э

Target space cohomology

Finding the right approach Spin chains

$$OSp(2N + 2|2N) \operatorname{chain} V_{2N+2|2N}^{\otimes L} \qquad GL(N|N) \operatorname{chain} (V_{N|N} \otimes V_{N|N}^*)^{\otimes L}$$

$$H_N^{OSp} = \operatorname{rep}_N(H_{Brauer}) \qquad H_N^{GL} = \operatorname{rep}_N(H_{Brauer}^{\otimes led}) \qquad H_N^{GL} = \operatorname{rep}_N(H_{Brauer}^{\otimes led}) \qquad H_N^{\otimes led} = \sum E_{i,i+1} + wP_{i,i+2} \qquad H_{Brauer}^{\otimes led} = \sum E_{i,i+1} + wP_{i,i+2} \qquad H_{Braue}^{\otimes led} = \sum$$

Reduction of σ -models on G/G' superspaces

C. Candu

Mathematical definitions and constructions Lie superalgebras

Cohomological reduction of a Lie superalgebra g

with respect to an odd element Q, such that $[Q, Q] = 2Q^2 = 0$, is the Lie superalgebra defined as

$$\mathsf{H}_{\mathcal{Q}}(\mathfrak{g}) = \frac{\mathsf{Ker}[\mathcal{Q}, \cdot]}{\mathsf{Im}[\mathcal{Q}, \cdot]} = \frac{\mathsf{Ker}_{\mathcal{Q}}\,\mathfrak{g}}{\mathsf{Im}_{\mathcal{Q}}\,\mathfrak{g}}$$

ヘロトス 置下 スヨトスヨト

San

 $r_O = \operatorname{rank}(Q)$

Mathematical definitions and constructions Lie superalgebras

Cohomological reduction of a Lie superalgebra g

with respect to an odd element Q, such that $[Q, Q] = 2Q^2 = 0$, is the Lie superalgebra defined as

$$\mathsf{H}_{\mathcal{Q}}(\mathfrak{g}) = \frac{\mathsf{Ker}[\mathcal{Q},\cdot]}{\mathsf{Im}[\mathcal{Q},\cdot]} = \frac{\mathsf{Ker}_{\mathcal{Q}}\,\mathfrak{g}}{\mathsf{Im}_{\mathcal{Q}}\,\mathfrak{g}}$$

Classification of cohomological reductions

$$\begin{aligned} \mathsf{H}_{\mathcal{Q}}\left(\operatorname{gl}(M|N)\right) &\simeq \operatorname{gl}(M - r_{\mathcal{Q}}|N - r_{\mathcal{Q}}) \\ \mathsf{H}_{\mathcal{Q}}\left(\operatorname{sl}(M|N)\right) &\simeq \operatorname{sl}(M - r_{\mathcal{Q}}|N - r_{\mathcal{Q}}) \\ \mathsf{H}_{\mathcal{Q}}\left(\operatorname{osp}(M|2N)\right) &\simeq \operatorname{osp}(M - 2r_{\mathcal{Q}}|2N - 2r_{\mathcal{Q}}) \end{aligned}$$

Reduction of σ -models on G/G' superspaces

C. Candu

ヘロト 人間 とくき とくきとう

୬ < ୯ 6/14

Э

Mathematical definitions and constructions Modules

Cohomological reduction of a \mathfrak{g} -module V is the $\mathsf{H}_Q(\mathfrak{g})$ -module defined as

$$\mathsf{H}_{\mathcal{Q}}(V) = \frac{\operatorname{\mathsf{Ker}} Q : V \mapsto V}{\operatorname{\mathsf{Im}} Q : V \mapsto V} = \frac{\operatorname{\mathsf{Ker}}_{\mathcal{Q}} V}{\operatorname{\mathsf{Im}}_{\mathcal{Q}} V}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Dac

Mathematical definitions and constructions Modules

Cohomological reduction of a \mathfrak{g} -module V is the $\mathsf{H}_Q(\mathfrak{g})$ -module defined as

$$\mathsf{H}_{\mathcal{Q}}(V) = \frac{\operatorname{\mathsf{Ker}} Q : V \mapsto V}{\operatorname{\mathsf{Im}} Q : V \mapsto V} = \frac{\operatorname{\mathsf{Ker}}_{\mathcal{Q}} V}{\operatorname{\mathsf{Im}}_{\mathcal{Q}} V}$$

Properties

• if $V \simeq V^*$ then

$$V|_{\mathsf{H}_{\mathcal{Q}}(\mathfrak{g})} \simeq W \oplus E \oplus F$$
$$W \simeq \mathsf{H}_{\mathcal{Q}}(V), E = \mathsf{Im}_{\mathcal{Q}} V$$

- $\mathsf{H}_{\mathcal{Q}}(U \oplus V) \simeq \mathsf{H}_{\mathcal{Q}}(U) \oplus \mathsf{H}_{\mathcal{Q}}(V)$
- $\mathsf{H}_Q(U^*) \simeq \left(\mathsf{H}_Q(U)\right)^*$
- $\mathsf{H}_{\mathcal{Q}}(U \otimes V) \simeq \mathsf{H}_{\mathcal{Q}}(U) \otimes \mathsf{H}_{\mathcal{Q}}(V)$

(ロ)、(型)、(E)、(E)、(E)

• $\operatorname{sdim} \operatorname{H}_Q(V) = \operatorname{sdim} V$

Mathematical definitions and constructions Modules

Cohomological reduction of a g-module V is the $H_O(g)$ -module defined as

$$\mathsf{H}_{\mathcal{Q}}(V) = \frac{\operatorname{\mathsf{Ker}} Q : V \mapsto V}{\operatorname{\mathsf{Im}} Q : V \mapsto V} = \frac{\operatorname{\mathsf{Ker}}_{\mathcal{Q}} V}{\operatorname{\mathsf{Im}}_{\mathcal{Q}} V}$$

Properties

• if $V \simeq V^*$ then

$$V|_{\mathsf{H}_{\mathcal{Q}}(\mathfrak{g})} \simeq W \oplus E \oplus F$$
$$W \simeq \mathsf{H}_{\mathcal{Q}}(V), E = \mathsf{Im}_{\mathcal{Q}} V$$

- $H_{O}(U \oplus V) \simeq H_{O}(U) \oplus H_{O}(V)$
- $\mathsf{H}_{\mathcal{O}}(U^*) \simeq \left(\mathsf{H}_{\mathcal{O}}(U)\right)^*$
- $\mathsf{H}_{\mathcal{O}}(U \otimes V) \simeq \mathsf{H}_{\mathcal{O}}(U) \otimes \mathsf{H}_{\mathcal{O}}(V)$
- sdim $H_Q(V) = sdim V$

- $\mathsf{H}_{O}(V_{2N+2|2N}) \simeq V_{2n+2|2n}$
- $\mathsf{H}_{O}(V_{2N+2|2N})^{\otimes L} \simeq (V_{2n+2|2n})^{\otimes L}$

Reduction of σ -models on G/G' superspaces

• $\mathsf{H}_O(V_{N|N}) \simeq V_{n|n}$

•
$$\mathsf{H}_Q(V_{N|N}) \overset{\otimes L}{\underset{\square}{\otimes}} \simeq (V_{n|n}) \overset{\otimes L}{\underset{\square}{\otimes}}$$

C. Candu

Dac 7/14

 $n=N-r_0$

Cohomological reduction of sigma models Target space cohomology

Set-up

- Pick target space supersymmetry Q, $Q^2 = 0$. Correlation functions of Q-invariant local fields depend only on their Q-cohomology.
- Compute the *Q*-cohomology of the space of local fields. Interpret the result as the space of local fields of a reduced field theory.
- Map the correlators of *Q*-invariant local fields to correlators in the reduced theory.

イロト 不得 とうほう うほう

Cohomological reduction of sigma models Target space cohomology

Set-up

- Pick target space supersymmetry Q, $Q^2 = 0$. Correlation functions of Q-invariant local fields depend only on their Q-cohomology.
- Compute the *Q*-cohomology of the space of local fields. Interpret the result as the space of local fields of a reduced field theory.

 \Rightarrow

Map the correlators of *Q*-invariant local fields to correlators in the reduced theory.

Cohomological reduction as a geometrical problem

geometrical object

- $T(G/G')^{\otimes n} \otimes L_2(G/G')$
- *G*-invariant symm/antisymm form of rank 2

field theory object

• *n*-worldsheet derivative fields

• kinetic/*B*-field or θ -terms in the action

Reduction of σ -models on G/G' superspaces

C. Candu

Target space cohomology Notations

Define the superalgebras

$$Q\in\mathfrak{g}'\subset\mathfrak{g}$$

$$\begin{split} \mathfrak{g}' &\simeq \mathfrak{h}' \oplus \mathfrak{e}' \oplus \mathfrak{f}' & \subset & \mathfrak{g} \simeq \mathfrak{h} \oplus \mathfrak{e} \oplus \mathfrak{f} \\ \mathfrak{h}' &\simeq \mathsf{H}_Q(\mathfrak{g}') & \subset & \mathfrak{h} \simeq \mathsf{H}_Q(\mathfrak{g}) \\ \mathfrak{e}' &= \mathsf{Im}_Q \,\mathfrak{g}' & \subset & \mathfrak{e} &= \mathsf{Im}_Q \,\mathfrak{g} \end{split}$$

ъ

ヘロト 人間 トイヨト イヨト

Target space cohomology Notations

Define the superalgebras

ъ

nac

$\mathfrak{g}'\simeq\mathfrak{h}'\oplus\mathfrak{e}'\oplus\mathfrak{f}'$	\subset	$\mathfrak{g}\simeq\mathfrak{h}\oplus\mathfrak{e}\oplus\mathfrak{f}$
$\mathfrak{h}'\simeq H_\mathcal{Q}(\mathfrak{g}')$	\subset	$\mathfrak{h}\simeqH_{\mathcal{Q}}(\mathfrak{g})$
$\mathfrak{e}' = \operatorname{Im}_Q \mathfrak{g}'$	\subset	$\mathfrak{e} = Im_Q \mathfrak{g}$

Define the supergroups with corresponding Lie superalgebras

G'	\subset	G
U		U
H'	C	Н

イロト 不得 とうほう うほう

Target space cohomology Notations

Define the superalgebras

$$\begin{array}{ll} \mathfrak{g}' \simeq \mathfrak{h}' \oplus \mathfrak{e}' \oplus \mathfrak{f}' & \subset & \mathfrak{g} \simeq \mathfrak{h} \oplus \mathfrak{e} \oplus \mathfrak{f} \\ \mathfrak{h}' \simeq H_Q(\mathfrak{g}') & \subset & \mathfrak{h} \simeq H_Q(\mathfrak{g}) \\ \mathfrak{e}' = \operatorname{Im}_Q \mathfrak{g}' & \subset & \mathfrak{e} = \operatorname{Im}_Q \mathfrak{g} \end{array}$$

Define the supergroups with corresponding Lie superalgebras

G'	\subset	G
U		U
H'	C	Н

Then one has

 $H/H'\subset G/G'$.

イロト 不得 トイヨト イヨト 二日

Target space cohomology Central results

Cohomology evaluation

$$\mathsf{H}_Q\left(T^{\otimes n}(G/G') \otimes L_2(G/G')
ight)$$

Q-invariant tensor form ω of

rank *n* on G/G'

 ω

 $\simeq T^{\otimes n}(H/H') \otimes L_2(H/H')$ $\stackrel{\rho}{\mapsto} \rho(\omega)$ restriction $\rho(\omega)$ of ω to $\bullet \text{ submanifold } H/H' \subset G/G'$ $\bullet T^{\otimes n}(H/H') \subset T^{\otimes n}(G/G')|_{H/H'}$

イロト 不得 とうほう うほう

Э

DQC

10/14

Reduction of σ -models on G/G' superspaces C. Candu

Target space cohomology Central results

Cohomology evaluation

$$\mathsf{H}_{\mathcal{Q}}\left(T^{\otimes n}(G/G') \otimes L_2(G/G')\right)$$

 ω

 $\simeq T^{\otimes n}(H/H') \otimes L_2(H/H')$ $\stackrel{\rho}{\mapsto} \qquad \rho(\omega)$ restriction $\rho(\omega)$ of ω to $\bullet \text{ submanifold } H/H' \subset G/G'$

•
$$T^{\otimes n}(H/H') \subset T^{\otimes n}(G/G')|_{H/H'}$$

۲

Localization formula

rank *n* on G/G'

Q-invariant tensor form ω of

$$\int_{G/G'} \omega = \int_{H/H'} \rho(\omega)$$

Reduction of σ -models on G/G' superspaces

C. Candu

10/14

Cohomological reduction of σ -models Results

Space of local fields

Q-cohomology of the space of local fields in the σ -model on G/G' identified with the space of local fields in the σ -model on H/H'.

イロト 不得 とうき とうせい

San

Cohomological reduction of σ -models Results

Space of local fields

Q-cohomology of the space of local fields in the σ -model on G/G' identified with the space of local fields in the σ -model on H/H'.

Action

Restriction of a G-invariant metric/2-form on G/G' to

- the points of $H/H' \subset G/G'$
- the tensor space $T^{\otimes 2}(H/H') \subset T^{\otimes 2}(G/G')|_{H/H'}$

$$S_{H/H'} = \rho(S_{G/G'})$$

San

obviously gives an *H*-invariant metric/2-form on H/H'

Cohomological reduction of σ -models Results

Space of local fields

Q-cohomology of the space of local fields in the σ -model on G/G' identified with the space of local fields in the σ -model on H/H'.

Action

Restriction of a G-invariant metric/2-form on G/G' to

- the points of $H/H' \subset G/G'$
- the tensor space $T^{\otimes 2}(H/H') \subset T^{\otimes 2}(G/G')|_{H/H'}$

$$S_{H/H'} = \rho(S_{G/G'})$$

obviously gives an H-invariant metric/2-form on H/H'

Correlation functions

$$\left\langle \prod_{i} O(x_i) \right\rangle_{G/G'} = \left\langle \prod_{i} \rho(O_i)(x_i) \right\rangle_{H/H'}$$

Reduction of σ -models on G/G' superspaces

C. Candu

CFT σ -models on symmetric superspaces Applications of cohomological reductions

reduced model H/H' conformal invariant

- G/G' admits a single radius only
- $c_{H/H'} \neq 0$

 σ -model G/G' is conformal invariant

ヘロト 不得 トイヨト 不良トー

Э

nac

 \Rightarrow

CFT σ -models on symmetric superspaces Applications of cohomological reductions

reduced model H/H' conformal invariant

- G/G' admits a single radius only
- $c_{H/H'} \neq 0$

 $\Rightarrow \quad \begin{array}{l} \sigma \text{-model } G/G' \text{ is} \\ \text{ conformal invariant} \end{array}$

Classification of CFT σ -models on G/G' superspaces with one radius only

σ -model	maximal reduction		
$\frac{OSp(2M+2N+2 2M+2N)}{OSp(2M+1 2M) \times OSp(2N+1 2N)}$	free		
OSp(2N+2 2N)	compact		
D(2,1;lpha)	boson		
$\frac{\operatorname{GL}(M+N+1 M+N+1)}{\operatorname{GL}(M+1 N)\times\operatorname{GL}(M N+1)}$	free		
$\frac{\mathrm{PSL}(2N 2N)}{\mathrm{OSp}(2N 2N)}$	symplectic		
PSL(N N)	fermions		
	▲□ > ▲母 > ▲ 書 !	<	∽ q
Reduction of σ -models on G/G' superspaces	C. Candu 🛞		12/1

• WZW σ -models can be reduced with the same tools: restriction of a *G*-invariant 3-form on *G* is again an *H*-invariant 3-form on *H*.

ヘロト 不得 トイヨト 不良トー

= 900

- WZW σ -models can be reduced with the same tools: restriction of a *G*-invariant 3-form on *G* is again an *H*-invariant 3-form on *H*.
- OSp(M|2N) Landau-Ginsburg

$$S = \int d^2x \left[(\partial_\mu \Phi, \partial_\mu \Phi) + g(\Phi, \Phi)^2
ight] \, ,$$

where Φ is an even field in the fundamental representation,

イロト イロト イモト イモト 三日

San

- WZW σ -models can be reduced with the same tools: restriction of a *G*-invariant 3-form on *G* is again an *H*-invariant 3-form on *H*.
- OSp(M|2N) Landau-Ginsburg

$$S = \int d^2 x \left[(\partial_\mu \Phi, \partial_\mu \Phi) + g(\Phi, \Phi)^2
ight] \, ,$$

where Φ is an even field in the fundamental representation, and Gross-Neveu models

$$S = \int d^2x \left[(\Psi, \bar{\partial}\Psi) + (\bar{\Psi}, \partial\bar{\Psi}) + g(\Psi, \bar{\Psi})^2
ight],$$

where $\Psi, \bar{\Psi}$ are an odd fields in the fundamental representation, can be reduced to corresponding $OSp(M - 2r_Q|N - 2r_Q)$ models.

- 日本 - 4 日本 - 日本 - 日本

San

- WZW σ -models can be reduced with the same tools: restriction of a *G*-invariant 3-form on *G* is again an *H*-invariant 3-form on *H*.
- OSp(M|2N) Landau-Ginsburg

$$S = \int d^2 x \left[(\partial_\mu \Phi, \partial_\mu \Phi) + g(\Phi, \Phi)^2
ight] \, ,$$

where Φ is an even field in the fundamental representation, and Gross-Neveu models

$$S = \int d^2x \left[(\Psi, \bar{\partial}\Psi) + (\bar{\Psi}, \partial\bar{\Psi}) + g(\Psi, \bar{\Psi})^2
ight],$$

where $\Psi, \bar{\Psi}$ are an odd fields in the fundamental representation, can be reduced to corresponding $OSp(M - 2r_Q|N - 2r_Q)$ models.

• Spin chains.

- 日本 - 小田本 - 田本 - 田本 - 田本

Conclusions

Results

- Mapping of *Q*-invariant correlation functions of local fields in the G/G' σ -model to correlation functions in an $H/H' \sigma$ -model.
- Classification of CFT σ -models with one radius.
- Extension of cohomological reduction to WZW, Landau-Ginsburg and Gross-Neveu models. Main idea applicable even to spin chains.

ヘロトス 同トス ヨトス ヨト

San

Conclusions

Results

- Mapping of *Q*-invariant correlation functions of local fields in the G/G' σ -model to correlation functions in an $H/H' \sigma$ -model.
- Classification of CFT σ -models with one radius.
- Extension of cohomological reduction to WZW, Landau-Ginsburg and Gross-Neveu models. Main idea applicable even to spin chains.

Outlook

- Reduction with respect to a target space supersymmetry *Q* that does not belong to the Lie superalgebra of the denominator group.
- Extension to string theory in the pure spinor formalism. Proof of conformal invariance.
- How does the integrability of a cohomological subsector constraint the integrability of the full theory?

