Yet more loop operators for $\mathcal{N}=6$ super Chern-Simons-matter theory

Nadav Drukker
Humboldt Universität zu Berlin
North German Strings Meeting, Hannover

February 23, 2010

Based on arXiv:0912.3006: N.D and D. Trancanelli
arXiv:0909.4559: A. Kapustin, B. Willett, I. Yaakov
arXiv:0912.3974: M. Mariño, P. Putrov

Introduction and motivation

- The $A d S /$ CFT correspondence is a powerful tool of modern theoretical physics.
- Allows to calculate gauge theory quantities at strong coupling (for large N).
- In the other direction, allows to calculate string theory quantities at large α^{\prime}.
- In very simple situations the results agree, indicating that there is a non-renormalization principle at work.

Introduction and motivation

- The $A d S /$ CFT correspondence is a powerful tool of modern theoretical physics.
- Allows to calculate gauge theory quantities at strong coupling (for large N).
- In the other direction, allows to calculate string theory quantities at large α^{\prime}.
- In very simple situations the results agree, indicating that there is a non-renormalization principle at work.
- In other very specific cases one can derive (or guess) non-trivial functions that interpolate from weak to strong coupling:
- BPS observables like Wilson loops, surface operators (topological subsectors).
- Integrability: Cusp anomalous dimension. Konishi? Scattering amplitudes?
- This has been achieved so far only for the simplest example of exact $A d S /$ CFT duality:

$$
\mathcal{N}=4 \mathrm{SYM} \quad \Longleftrightarrow \quad \text { Type IIB on } A d S_{5} \times S^{5}
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for an exact $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \mathrm{SCS} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-thoery on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for an exact $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \mathrm{SCS} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-thoery on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Following 18 months and 390 citations: No exact interpolating functions!

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for an exact $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \mathrm{SCS} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-thoery on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Following 18 months and 390 citations: No exact interpolating functions!
- Attempt: Magnon dispersion relation:

$$
E(p)=\sqrt{J^{2}+4 h^{2}(\lambda) \sin ^{2} \frac{p}{2}}-J
$$

- Form obeyed at weak and strong coupling (constrained by symmetry).
- In $\mathcal{N}=4$ SYM same structure with $h^{2}(\lambda)=\lambda / 4 \pi^{2}$.
- In ABJM: Unknown function

$$
h^{2}(\lambda)= \begin{cases}\lambda^{2}-4 \lambda^{4}(4-\zeta(2))+\cdots & \text { small } \lambda \\ \frac{1}{2} \lambda+\cdots & \text { large } \lambda\end{cases}
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for an exact $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \mathrm{SCS} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-thoery on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Following 18 months and 390 citations: No exact interpolating functions!
- Attempt: Magnon dispersion relation:

$$
E(p)=\sqrt{J^{2}+4 h^{2}(\lambda) \sin ^{2} \frac{p}{2}}-J
$$

- Form obeyed at weak and strong coupling (constrained by symmetry).
$-\operatorname{In} \mathcal{N}=4$ SYM same structure with $h^{2}(\lambda)=\lambda / 4 \pi^{2}$.
- In ABJM: Unknown function

$$
h^{2}(\lambda)= \begin{cases}\lambda^{2}-4 \lambda^{4}(4-\zeta(2))+\cdots & \text { small } \lambda \\ \frac{1}{2} \lambda+\cdots & \text { large } \lambda\end{cases}
$$

- Can a BPS Wilson loop be calculated exactly?

Outline

- Introduction and motivation.
- Review: 1/2 BPS Wilson loop in 4d.
- 1/6 BPS Wilson loop of ABJM.
- 1/2 BPS Wilson loop of ABJM.
- Localization of $1 / 6$ BPS Wilson loop.
- Application to $1 / 2$ BPS Wilson loop.
- The super matrix model.
- Exact interpolating function.
- Summary.

1/2 BPS Wilson loop in 4d

[Erickson, Semenoff, Zarembo][N.D, Gross]

- In $\mathcal{N}=4 \mathrm{SYM}$ can take the circular Wilson loop

$$
W=\frac{1}{N} \operatorname{Tr} \mathcal{P} \exp \left[i \int\left(A_{\mu} \dot{x}^{\mu}+i \Phi|\dot{x}|\right) d t\right]
$$

- Sum over ladder graphs given by a Gaussian matrix model!

$$
\langle W\rangle=\frac{1}{Z} \int \mathcal{D} M \frac{1}{N} \operatorname{Tr} e^{M} e^{-\frac{2}{g^{2}} \operatorname{Tr} M^{2}}
$$

- Proven to be exact.
- Generalized to theories with $\mathcal{N}=2$ supersymmetry.

- At large N and large $g^{2} N$ this becomes

$$
\underset{N \rightarrow \infty}{\longrightarrow} \frac{2}{\sqrt{g^{2} N}} I_{1}\left(\sqrt{g^{2} N}\right) \quad \underset{g^{2} N \rightarrow \infty}{\longrightarrow} e^{\sqrt{g^{2} N}}
$$

- Exactly matches the action for the corresponding classical string.
- By using D3 or D5 brane can also match $1 / N$ terms.

$\underline{\text { Lightning review of } \mathrm{ABJ}(\mathrm{M}) \text { theory }}$

- $U(N) \times U(M)$ gauge symmetry.
- Chern-Simons terms at levels k and $-k$.
- Kinetic terms for scalars and fermions.
- Very specific sextic scalar potential and $(C)^{2}(\psi)^{2}$ terms.
- Normally 3d super Chern-Simons has $\mathcal{N}=2$ or $\mathcal{N}=3$ SUSY.

Field content		dim	rep	
A_{μ}	gauge field	1	adj	1
\widehat{A}_{μ}	gauge field	1	1	adj
C_{I}	scalar	$1 / 2$	N	\bar{M}
\bar{C}^{I}	scalar	$1 / 2$	\bar{N}	M
ψ_{I}	fermion	1	\bar{N}	M
$\bar{\psi}_{I}$	fermion	1	N	\bar{M}

- This special quiver construction allows for $\mathcal{N}=6$ SUSY.
- For $k=1,2$ should be enhanced to $\mathcal{N}=8$ SUSY.

Lightning review of $\mathrm{ABJ}(\mathrm{M})$ theory

- $U(N) \times U(M)$ gauge symmetry.
- Chern-Simons terms at levels k and $-k$.
- Kinetic terms for scalars and fermions.
- Very specific sextic scalar potential and $(C)^{2}(\psi)^{2}$ terms.
- Normally 3d super Chern-Simons has $\mathcal{N}=2$ or $\mathcal{N}=3$ SUSY.

Field content		dim	rep	
A_{μ}	gauge field	1	adj	1
\widehat{A}_{μ}	gauge field	1	1	adj
C_{I}	scalar	$1 / 2$	N	\bar{M}
\bar{C}^{I}	scalar	$1 / 2$	\bar{N}	M
ψ_{I}	fermion	1	\bar{N}	M
$\bar{\psi}_{I}$	fermion	1	N	\bar{M}

- This special quiver construction allows for $\mathcal{N}=6$ SUSY.
- For $k=1,2$ should be enhanced to $\mathcal{N}=8$ SUSY.
- Is the low energy theory of N M2-branes on a $\mathbb{C}^{4} / \mathbb{Z}_{k}$ orbifold (with $M-N$ fractional branes).
- Gravity dual: M-theory on $A d S_{4} \times S^{7} / \mathbb{Z}_{k}$.
- For $k^{5} \gg N$ a better description is IIA on $A d S_{4} \times \mathbb{C P}^{3}$.
- Analog of 't Hooft coupling: $\lambda=N / k$.

$1 / 6$ BPS Wilson loop of ABJM

$$
\left[\begin{array}{c}
\text { N.D, Plefka } \\
\text { Young }
\end{array}\right]\left[\begin{array}{c}
\text { Chen } \\
\mathrm{Wu}
\end{array}\right]\left[\begin{array}{c}
\text { Rey, Suyama } \\
\text { Yamaguchi }
\end{array}\right]
$$

- Borrowing from the 4 d theory, to make a BPS loop we can add a scalar piece to the connection

$$
A_{\mu} \dot{x}^{\mu} \quad \rightarrow \quad \mathcal{A}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J}
$$

- It's a bilinear on dimensional grounds and so it's in adjoint of $U(N)$.
- Checking SUSY gives unique solution

$$
\delta_{\mathrm{SUSY}} \mathcal{A}=0 \quad \Longrightarrow \quad M_{J}^{I}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Preserves two Poincaré supercharges and two superconformal ones $\Rightarrow 1 / 6 \mathrm{BPS}$.
- Was calculated perturbatively to order λ^{2}

$$
\langle W\rangle=1+\frac{5 \pi^{2}}{6} \lambda^{2}+\cdots
$$

- There was no simple guess on how to extend to all orders.

Not satisfying....

- Such a Wilson loop is good supersymmetric observable.

Yet:

1. The fundamental string in $A d S_{4}$ ending on a circle at the boundary is $1 / 2$ BPS. It has action $S=-\pi \sqrt{2 \lambda}$, so the VEV of the Wilson loop is

$$
\langle W\rangle_{\text {Large } \mathrm{N}} \sim e^{\pi \sqrt{2 \lambda}}
$$

2. The fundamental string preserves $S U(3) \subset S U(4)$ flavor symmetry. The Wilson loop $S U(2) \times S U(2)$.

The dual of the $1 / 6$ BPS Wilson loop is at best some "smeared" fundamental string.

Not satisfying....

- Such a Wilson loop is good supersymmetric observable.

Yet:

1. The fundamental string in $A d S_{4}$ ending on a circle at the boundary is $1 / 2$ BPS. It has action $S=-\pi \sqrt{2 \lambda}$, so the VEV of the Wilson loop is

$$
\langle W\rangle_{\text {Large } \mathrm{N}} \sim e^{\pi \sqrt{2 \lambda}}
$$

2. The fundamental string preserves $S U(3) \subset S U(4)$ flavor symmetry. The Wilson loop $S U(2) \times S U(2)$.

The dual of the $1 / 6$ BPS Wilson loop is at best some "smeared" fundamental string.

- This Wilson loop exists in any $\mathcal{N}=2$ super Chern-Simons theory.
- It does not see any SUSY enhancement when going form $\mathcal{N}=2$ to $\mathcal{N}=6$
- It can exist in either of the two groups or in both. Does not know of the special quiver construction of ABJM!

Not satisfying....

- Such a Wilson loop is good supersymmetric observable.

Yet:

1. The fundamental string in $A d S_{4}$ ending on a circle at the boundary is $1 / 2$ BPS. It has action $S=-\pi \sqrt{2 \lambda}$, so the VEV of the Wilson loop is

$$
\langle W\rangle_{\text {Large } \mathrm{N}} \sim e^{\pi \sqrt{2 \lambda}}
$$

2. The fundamental string preserves $S U(3) \subset S U(4)$ flavor symmetry. The Wilson loop $S U(2) \times S U(2)$.

The dual of the $1 / 6$ BPS Wilson loop is at best some "smeared" fundamental string.

- This Wilson loop exists in any $\mathcal{N}=2$ super Chern-Simons theory.
- It does not see any SUSY enhancement when going form $\mathcal{N}=2$ to $\mathcal{N}=6$
- It can exist in either of the two groups or in both. Does not know of the special quiver construction of ABJM!

Still an interesting observable!

1/2 BPS Wilson loop of ABJM

[Initiated in discussions with [V. Niarchos, G. Michalogiorgakis

- Such a Wilson loop in both gauge groups can be written in terms of an $(N+M) \times(N+M)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

1/2 BPS Wilson loop of ABJM

- Such a Wilson loop in both gauge groups can be written in terms of an $(N+M) \times(N+M)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

- Generalization: Write an $(N+M) \times(N+M)$ superconnection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & \sqrt{\frac{2 \pi}{k}}|\dot{x}| \eta_{I}^{\alpha} \bar{\psi}_{\alpha}^{I} \\
\sqrt{\frac{2 \pi}{k}}|\dot{x}| \psi_{I}^{\alpha} \bar{\eta}_{\alpha}^{I} & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

The natural Wilson loop is then

$$
W_{\mathcal{R}} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L d \tau\right)
$$

\mathcal{R} is a representation of the supergroup $S U(N \mid M)$.

1/2 BPS Wilson loop of ABJM

- Such a Wilson loop in both gauge groups can be written in terms of an $(N+M) \times(N+M)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

- Generalization: Write an $(N+M) \times(N+M)$ superconnection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & \sqrt{\frac{2 \pi}{k}}|\dot{x}| \eta_{I}^{\alpha} \bar{\psi}_{\alpha}^{I} \\
\sqrt{\frac{2 \pi}{k}}|\dot{x}| \psi_{I}^{\alpha} \bar{\eta}_{\alpha}^{I} & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

The natural Wilson loop is then

$$
W_{\mathcal{R}} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L d \tau\right)
$$

\mathcal{R} is a representation of the supergroup $S U(N \mid M)$.
Can this be supersymmetric?

Checking SUSY

- To preserve $S U(3)$ R-symmetry we choose

$$
M_{J}^{I}=\widehat{M}_{J}^{I}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Under half of the supercharges

$$
\delta \mathcal{A} \propto C \psi_{1}^{+}+\bar{\psi}_{+}^{1} \bar{C} \quad \delta \widehat{\mathcal{A}} \propto \psi_{1}^{+} C+\bar{C} \bar{\psi}_{+}^{1}
$$

- Chose therefore

$$
\eta_{I}^{\alpha} \propto \delta_{I}^{1} \delta_{+}^{\alpha}
$$

$$
L=\left(\begin{array}{cc}
\mathcal{A} & \sqrt{\frac{2 \pi}{k}}|\dot{x}| \eta_{I}^{\alpha} \bar{\psi}_{\alpha}^{I} \\
\sqrt{\frac{2 \pi}{k}}|\dot{x}| \psi_{I}^{\alpha} \bar{\eta}_{\alpha}^{I} & \widehat{\mathcal{A}}
\end{array}\right)
$$

For the time-like line:

$$
\begin{aligned}
& \mathcal{A}=A_{0}+\frac{2 \pi}{k} M_{J}^{I} C_{I} \bar{C}^{J} \\
& \widehat{\mathcal{A}}=\widehat{A}_{0}+\frac{2 \pi}{k} M_{J}^{I} \bar{C}^{J} C_{I}
\end{aligned}
$$

- The variation of the fermion under the SUSY

$$
\delta \psi_{1}^{+}=2 \gamma^{\mu} D_{\mu} \bar{C}+\bar{C} C \bar{C} \quad D_{\mu} \bar{C}=\partial_{\mu} \bar{C}+i \widehat{A}_{\mu} \bar{C}-i \bar{C} A_{\mu}
$$

- For a choice of half the supercharge with specific chiralities we get $\left(\gamma^{\mu}\right)_{+}^{+}=\delta_{0}^{\mu}$. All the cubic terms in C organize such that

$$
\delta \psi_{1}^{+}=2 \mathcal{D} \bar{C} \quad \mathcal{D} \bar{C}=\partial_{0} \bar{C}+i \widehat{\mathcal{A}} \bar{C}-i \bar{C} \mathcal{A}
$$

A covariant derivative along the line with the modified connection!

- We finally get that under the three supercharges parameterized by $\bar{\theta}_{+}^{1 I}$ and the three by $\bar{\theta}^{I J+}$

$$
\delta L=\frac{8 \pi}{k} \bar{\theta}_{+}^{1 I}\left(\begin{array}{cc}
C_{I} \psi_{1}^{+} & \sqrt{\frac{k}{8 \pi}} \eta \mathcal{D}_{0} C_{I} \\
0 & \psi_{1}^{+} C_{I}
\end{array}\right)-\frac{4 \pi}{k} \varepsilon_{1 I J K} \bar{\theta}^{I J+}\left(\begin{array}{cc}
\bar{\psi}_{+}^{1} \bar{C}^{K} & 0 \\
\sqrt{\frac{k}{8 \pi}} \bar{\eta}_{0} \bar{C}^{K} & \bar{C}^{K} \bar{\psi}_{+}^{1}
\end{array}\right)
$$

This is not zero...

- We finally get that under the three supercharges parameterized by $\bar{\theta}_{+}^{1 I}$ and the three by $\bar{\theta}^{I J+}$

$$
\delta L=\frac{8 \pi}{k} \bar{\theta}_{+}^{1 I}\left(\begin{array}{cc}
C_{I} \psi_{1}^{+} & \sqrt{\frac{k}{8 \pi}} \eta \mathcal{D}_{0} C_{I} \\
0 & \psi_{1}^{+} C_{I}
\end{array}\right)-\frac{4 \pi}{k} \varepsilon_{1 I J K} \bar{\theta}^{I J+}\left(\begin{array}{cc}
\bar{\psi}_{+}^{1} \bar{C}^{K} & 0 \\
\sqrt{\frac{k}{8 \pi}} \bar{\eta} \mathcal{D}_{0} \bar{C}^{K} & \bar{C}^{K} \bar{\psi}_{+}^{1}
\end{array}\right)
$$

This is not zero...

- But the variation of the entire Wilson loop is.
- Crucial point: Expanding the Wilson loop in a power series in the fermionic terms it is possible to integrate the modified covariant derivative!
$W_{\mathcal{R}}=\operatorname{Tr}_{\mathcal{R}} \mathcal{P}\left[e^{i \int L_{B} d \tau}\left(1+i \int_{-\infty}^{\infty} d \tau_{1} L_{F}\left(\tau_{1}\right)-\int_{-\infty}^{\infty} d \tau_{1} \int_{\tau_{1}}^{\infty} d \tau_{2} L_{F}\left(\tau_{1}\right) L_{F}\left(\tau_{2}\right)+\ldots\right)\right]$
- The variation of the linear term is a total derivative.
- The variation of $e^{i \int L_{B}}$ gives at the linear order $\delta \mathcal{A} \sim C \psi$. This cancels the variation of the quadratic term in L_{B}, after integration by parts (for $\eta \bar{\eta}=2 i$).
- This repeats at all orders: Integrating by parts the total derivative is canceled by an insertion of $\int \delta L_{B}$ into the term with two fewer L_{F} factors.

Localization of $1 / 6$ BPS Wilson loop

Though it's not $1 / 2$ BPS or dual to the simplest fundamental string (Or M2 brane), can one get an exact interpolating function for the $1 / 6$ BPS Wilson loop?

- Consider any $\mathcal{N}=2$ super Chern-Simons matter theory on S^{3}.
- Take a Wilson loop of that theory on the equator invariant under a supercharge Q.
- Add to the action a Q-exact term of the form $t Q(\Psi Q \Psi)$.
- VEV of Q-invariant observables is unmodified by this insertion.
- Take t large and look at the saddle points of $(Q \Psi)^{2}$.
- Get the VEV of the Wilson loop from the classical value at the saddle point and the one loop determinant around that point.
- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \lambda_{a} e^{i k \pi \lambda_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\lambda_{a}-\lambda_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \lambda_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.
$[$ Mariño $]\left[\begin{array}{c}\text { Aganagic, Klemm } \\ \text { Mariño, C. Vafa }\end{array}\right]\left[\begin{array}{c}\text { Halmagyi } \\ \text { Yasnov }\end{array}\right]$
- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \lambda_{a} e^{i k \pi \lambda_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\lambda_{a}-\lambda_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \lambda_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.

$$
\left[\begin{array}{l}
\text { Mariño }
\end{array}\right]\left[\begin{array}{c}
\text { Aganagic, Klemm } \\
\text { Mariño, C. Vafa }
\end{array}\right]\left[\begin{array}{c}
\text { Halmagyi } \\
\text { Yasnov }
\end{array}\right]
$$

- Applying this to $\operatorname{ABJ}(\mathrm{M})$ theory one finds the partition function

$$
Z=\int \prod_{a=1}^{N} d \lambda_{a} e^{i k \pi \lambda_{a}^{2}} \prod_{\hat{a}=1}^{M} d \hat{\lambda}_{\hat{a}} e^{-i k \pi \hat{\lambda}_{\hat{a}}^{2}} \frac{\prod_{a<b} \sinh ^{2}\left(\pi\left(\lambda_{a}-\lambda_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\hat{\lambda}_{\hat{a}}-\hat{\lambda}_{\hat{b}}\right)\right)}{\prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\lambda_{a}-\hat{\lambda}_{\hat{a}}\right)\right)}
$$

- $1 / 6$ BPS Wilson loop in the fundamental of first group is same insertion as above.
- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \lambda_{a} e^{i k \pi \lambda_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\lambda_{a}-\lambda_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \lambda_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.

$$
[\text { Mariño }]\left[\begin{array}{c}
\text { Aganagic, Klemm } \\
\text { Mariño, C. Vafa }
\end{array}\right]\left[\begin{array}{c}
\text { Halmagyi } \\
\text { Yasnov }
\end{array}\right]
$$

- Applying this to $\operatorname{ABJ}(\mathrm{M})$ theory one finds the partition function

$$
Z=\int \prod_{a=1}^{N} d \lambda_{a} e^{i k \pi \lambda_{a}^{2}} \prod_{\hat{a}=1}^{M} d \hat{\lambda}_{\hat{a}} e^{-i k \pi \hat{\lambda}_{\hat{a}}^{2}} \frac{\prod_{a<b} \sinh ^{2}\left(\pi\left(\lambda_{a}-\lambda_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\hat{\lambda}_{\hat{a}}-\hat{\lambda}_{\hat{b}}\right)\right)}{\prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\lambda_{a}-\hat{\lambda}_{\hat{a}}\right)\right)}
$$

- $1 / 6$ BPS Wilson loop in the fundamental of first group is same insertion as above.
- Interpretation: This is the matrix model for $S U(N \mid M)$ Chern-Simons on S^{3} / \mathbb{Z}_{2} :

1. The odd terms contribution to the Vandermonde determinant go in the denominator.
2. The orbifold allows for two saddle points: $\hat{\lambda}$ shifted by $i / 2$.

- This Wilson loop is not the most natural observable!

Localization for 1/2 BPS Wilson loop

- Can use the same localization for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $S U(N \mid M)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

Localization for 1/2 BPS Wilson loop

- Can use the same localization for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $S U(N \mid M)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

| The difference between the $1 / 2$ BPS Wilson loop |
| :--- | :--- |
| and this specific $1 / 6$ BPS loop is Q-exact. |

Localization for 1/2 BPS Wilson loop

- Can use the same localization for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $S U(N \mid M)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

The difference between the $1 / 2$ BPS Wilson loop and this specific $1 / 6 \mathrm{BPS}$ loop is Q-exact.

- The Wilson loop in the fundamental of $S U(N \mid M)$ inserts into the matrix model

$$
W=\sum_{a=1}^{N} e^{2 \pi \lambda_{a}}+\sum_{\hat{a}=1}^{M} e^{2 \pi \hat{\lambda}_{\hat{a}}}
$$

- For a general representation the insertion is

$$
W_{\mathcal{R}}=\operatorname{Tr}_{\mathcal{R}}\left(\begin{array}{cc}
\operatorname{diag}\left(e^{2 \pi \lambda_{a}}\right) & 0 \\
0 & \operatorname{diag}\left(e^{2 \pi \hat{\lambda}_{\hat{a}}}\right)
\end{array}\right)=\operatorname{sir}_{\mathcal{R}}\left(\begin{array}{cc}
\operatorname{diag}\left(e^{2 \pi \lambda_{a}}\right) & 0 \\
0 & -\operatorname{diag}\left(e^{2 \pi \hat{\lambda}_{\widehat{a}}}\right)
\end{array}\right)
$$

- These are the natural observables in this super matrix model!

Exact interpolating function

- The matrix model for $S U(N+M)$ Chern-Simons on S^{3} / \mathbb{Z}_{2} has a large- N solution.
- To get $S U(N \mid M)$ analytically continue $M \rightarrow-M$.
- To compare with string theory we should take λ large (with $M \sim N$).
- For the $1 / 2 \mathrm{BPS}$ loop the result is

$$
\left\langle W^{(1 / 2)}\right\rangle=\frac{1}{8 \pi \lambda} e^{\pi \sqrt{2 \lambda}}
$$

- For the $1 / 6 \mathrm{BPS}$ loop the result is

$$
\left\langle W^{(1 / 6)}\right\rangle=\frac{1}{2 \pi \sqrt{2 \lambda}} e^{\pi \sqrt{2 \lambda}}
$$

- The exponent precisely matches the action of a fundamental string!
- Different prefactors could be related to localized/smeared string.

Summary

- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- $1 / 6$ BPS loop can also be calculated exactly.
- More complicated.

Summary

- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- $1 / 6$ BPS loop can also be calculated exactly.
- More complicated.
- Some open questions:
- Perturbative check? How does the matrix model arise?
$-1 / N^{2}$ corrections: Giant Wilson loops?
- Relation to vortex loop operators.
- Other exactly calculable quantities - "AGT for 3d theories"?

Summary

- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- $1 / 6$ BPS loop can also be calculated exactly.
- More complicated.
- Some open questions:
- Perturbative check? How does the matrix model arise?
$-1 / N^{2}$ corrections: Giant Wilson loops?
- Relation to vortex loop operators.
- Other exactly calculable quantities - "AGT for 3d theories"?
- ABJM theory is harder than $\mathcal{N}=4$ SYM, but not impossible!

The end

