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Motivation-Introduction

I In 0705.0303 Alday-Maldacena conjectured that
planar gluon scattering amplitudes at strong coupling = area of classical
string configuration in AdS × point with light-like boundaries.

I After that extension to AdS4, AdS5, 8-gluons, n-gluons.

I Here, we ask the question what happens when we have AdS5 × S5 strings
with light-like boundaries.
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We want to study spacelike minimal surfaces in AdS × S. There are two
possibilities.

I separately minimal in AdS and minimal in S
VirasoroAdS = VirasoroS = 0
example was given by Alday-Maldacena
Y = 1√

2
(cosh τ, coshσ, sinhσ, sinh τ)

sphere part can be a point or everything but a point or twice
everything but a point, etc (instanton solution, stereographic
projection)

I minimal only in total AdS × S but not in separately
VirasoroAdS + VirasoroS = 0, VirasoroAdS 6= VirasoroS
We have two possibilities
• AdS spacelike, S spacelike
• AdS timelike, S spacelike
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Pohlmeyer reduction (1976)

We would like to solve eom+Virasoro for the string sigma model. Many
different techniques have been developed (depending on the problem we
want to solve) including

I ansatz

I dressing method (for example in the case of giant magnons)

I Pohlmeyer reduction

I ...

We use the Pohlmeyer reduction method. One can view the Pohlmeyer
reduction as a sophisticated gauge choice where we are left with a model
that only involves physical degrees of freedom. The reduced model inherits
integrable structures of the original sigma model.
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Let us see how the Pohlmeyer reduction works in the simpler case of pure
AdS3 and then quote the result of the AdS × S case we are interested in.

eom : ∂∂̄Y = (∂Y · ∂̄Y )Y

Vir : (∂Y )2 = (∂̄Y )2 = 0

length : Y 2 = −1

AdS3 example

�
∂∂̄α = sinhα

sinh-Gordon

I Choose a Basis = (Y, ∂Y, ∂̄Y,N), where N⊥(Y, ∂Y, ∂̄Y ).
I Set ∂Y · ∂̄Y = eα (for more complicated cases we need more fields)
I Calculate ∂Basis and ∂̄Basis
I Demand that ∂(∂̄Basis) = ∂̄(∂Basis) (compatibility condition)

sinh-Gordon should contain all information we need in boundary behavior
and location of the poles.
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Some more examples

S2 strings←→ sin Gordon

S3 strings←→ complex sin Gordon

AdS5 strings←→ generalized sinh Gordon

CP 3 strings←→ known

AdS5 × S5 strings←→ system of generalized sin(h) Gordon

ansatz

dressing method

Bäcklund transformation

. . .

strings in AdS5 × S5

�

Hitchin equations

ansatz

Bäcklund transformation

. . .

generalized sin(h)-Gordon
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AdS3 projection

We focus on strings in AdS3 × S3. It turns out that the solution depends
on four real parameters, two for the sphere projection and two for the
AdS3. Let us call these parameters

θ, θs, ρ, ρs,

where the subscript s means sphere.
The AdS3 projection is

Y = (sin θ cosh η, cos θ cosh ξ, cos θ sinh ξ, sin θ sinh η).

• η, ξ are linear combinations of the worldsheet coordinates σ, τ and they
depend on ρ, θ.
• It depends on two parameters θ, ρ.
• the meaning of the parameter ρ will be discussed later.
• It is the intersection of the AdS hyperboloid and the surface
Y 2
0 − Y 2

1 = cos2 θ.
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θ → 0 θ = π/4 θ → π/2

Figure: Three different AdS3 solutions. The plot in the middle corresponds to the
solution of Alday-Maldacena.

• The AdS3 surfaces has constant mean curvature.
• The shape of the surface only depends on one parameter, θ.
• It is not minimal, but it becomes minimal when θ = π/4 and then we
recover the Alday-Maldacena surface.
• They all have the same lightlike boundaries.
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S3 projection

Similarly, the S3 projection is

X = (sin θs cos ηs, cos θs cos ξs, cos θs sin ξs, sin θs sin ηs).

θs → 0 θs = π/4 θs → π/2

Figure: Three plots showing a stereographic projection of the above sphere
solutions with different values of the parameter θs. The left plot shows that the
case θs → 0 maps to a circle. The right plot is the solution for θs → π/2, which
is a similar degenerate torus, but now projected to an infinite line in the
stereographic projection.
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Explanation of the meaning of ρ, ρs

They are parameters of the inner geometry.
Consider the toy model

y=x

y=x3

x

y

Figure: Two different curves with the same projections.

• So, ρ, ρs control the relative orientation of the AdS3 and S3 projections.
• They count how many cm I move in S3, if I move 1 cm in AdS3.
• The total induded metric is conformal and equal to (1 + ρ2 + ρ2s)I2×2.
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Regularized action

There are several methods to regularize, including dimensional
regularization and using a cutoff rc.
For our solution we have found that the regularized area is

Sreg =

√
λ

2π

(1 + ρ2 + ρ2s) sin 2θ

ρ
√

1 + ρ2
I(rc) ,

I(rc) =
1

4

(
log

r2c cos2 θ

−4π2s

)2

+
1

4

(
log

r2c sin2 θ

−4π2t

)2

− 1

4

(
log

s

t

)2
+ const.

I s, t are the Mandelstam variables

I I(rc) has the same (s, t)-dependent part as the BDS formula with a
suitable position dependent cutoff

I in general prefactor > 1, for ρ→∞, θ = π/4 we get prefactor = 1
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Spacelike strings with timelike AdS3

By analytically continuing some of the parameters of our spacelike in total
AdS3 × S3 solution (with spacelike AdS3 projection) we can get a new
family of spacelike in total string solutions (with timelike AdS3 projection).

Figure: The AdS3 projection of different solutions. There are more solutions that
are not presented here. A more detailed study and classification of solutions with
lightlike boundaries is in progress.
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Timelike in total strings

A second by-product of our construction is a set of new timelike surfaces
in AdS3 × S3, that are not minimally in AdS3 and S3 separately. We just
plot some representatives.

(a) (b) (c)

Figure: AdS projection of time-like surfaces in AdS × S.
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Summary-Conclusions

I We have constructed a four parameter family of string solutions in
AdS5 × S5 whose boundary approaches the light-like tetragon and are
a generalization of the solution of Alday-Maldacena. These minimal
surfaces are space-like and flat. Their projections on each of the
AdS5 and S5 have constant mean curvature. As the surface
approaches the boundary of AdS5 it wraps a torus inside S5 an
infinite number of times. The solutions therefore satisfy Neumann
boundary conditions on S5.

I We have demonstrated the use of a general and powerful method
(due to Pohlmeyer) that reduces the string system to a system with
only physical degrees of freedom.

I Pohlmeyer reduction has some classification power (work in progress)

I Up to a prefactor our area is the same as the one of Alday-Maldacena
with a position dependent cutoff.

I Are our solutions related to scattering amplitudes?

I Wilson loops?
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