Spacelike minimal surfaces in $AdS \times S$

In collaboration with H. Dorn, N. Drukker, G. Jorjadze

Chrysostomos Kalousios

Humboldt-Universität zu Berlin

Nordic String Theory Meeting 2010 22-23 February 2010

0912.3829 and work in progress

Outline

- Introduction
- Pohlmeyer reduction in general (tool to construct the string solution)
- Pohlmeyer reduction in $AdS_3 \times S^3$
- The AdS₃ projection (description of the new string solutions)
- The S^3 projection
- Regularized area
- Conclusions

Motivation-Introduction

- ▶ In 0705.0303 Alday-Maldacena conjectured that planar gluon scattering amplitudes at strong coupling = area of classical string configuration in AdS × point with light-like boundaries.
- After that extension to AdS_4 , AdS_5 , 8-gluons, n-gluons.
- ▶ Here, we ask the question what happens when we have $AdS_5 \times S^5$ strings with light-like boundaries.

We want to study spacelike minimal surfaces in $AdS \times S.$ There are two possibilities.

 separately minimal in AdS and minimal in S Virasoro_{AdS} = Virasoro_S = 0 example was given by Alday-Maldacena Y = ¹/_{√2}(cosh τ, cosh σ, sinh σ, sinh τ) sphere part can be a point or everything but a point or twice everything but a point, etc (instanton solution, stereographic projection) We want to study spacelike minimal surfaces in $AdS \times S.$ There are two possibilities.

- separately minimal in AdS and minimal in S Virasoro_{AdS} = Virasoro_S = 0 example was given by Alday-Maldacena Y = ¹/_{√2}(cosh τ, cosh σ, sinh σ, sinh τ) sphere part can be a point or everything but a point or twice everything but a point, etc (instanton solution, stereographic projection)
- ▶ minimal only in total AdS × S but not in separately Virasoro_{AdS} + Virasoro_S = 0, Virasoro_{AdS} ≠ Virasoro_S We have two possibilities
 - AdS spacelike, S spacelike
 - AdS timelike, S spacelike

Pohlmeyer reduction (1976)

We would like to solve eom+Virasoro for the string sigma model. Many different techniques have been developed (depending on the problem we want to solve) including

ansatz

▶ ...

- dressing method (for example in the case of giant magnons)
- Pohlmeyer reduction

We use the Pohlmeyer reduction method. One can view the Pohlmeyer reduction as a sophisticated gauge choice where we are left with a model that only involves physical degrees of freedom. The reduced model inherits integrable structures of the original sigma model.

• Choose a Basis = $(Y, \partial Y, \overline{\partial}Y, N)$, where $N \perp (Y, \partial Y, \overline{\partial}Y)$.

- Choose a Basis = $(Y, \partial Y, \overline{\partial}Y, N)$, where $N \perp (Y, \partial Y, \overline{\partial}Y)$.
- Set $\partial Y \cdot \bar{\partial} Y = e^{\alpha}$ (for more complicated cases we need more fields)

- Choose a Basis = $(Y, \partial Y, \overline{\partial}Y, N)$, where $N \perp (Y, \partial Y, \overline{\partial}Y)$.
- Set $\partial Y \cdot \bar{\partial} Y = e^{\alpha}$ (for more complicated cases we need more fields)
- Calculate $\partial Basis$ and $\bar{\partial} Basis$

- Choose a Basis = $(Y, \partial Y, \overline{\partial}Y, N)$, where $N \perp (Y, \partial Y, \overline{\partial}Y)$.
- Set $\partial Y \cdot \bar{\partial} Y = e^{\alpha}$ (for more complicated cases we need more fields)
- Calculate $\partial Basis$ and $\overline{\partial} Basis$
- ▶ Demand that $\partial(\bar{\partial}Basis) = \bar{\partial}(\partial Basis)$ (compatibility condition)

- Choose a Basis = $(Y, \partial Y, \overline{\partial}Y, N)$, where $N \perp (Y, \partial Y, \overline{\partial}Y)$.
- Set $\partial Y \cdot \bar{\partial} Y = e^{\alpha}$ (for more complicated cases we need more fields)
- Calculate $\partial Basis$ and $\bar{\partial} Basis$
- Demand that $\partial(\bar{\partial}Basis) = \bar{\partial}(\partial Basis)$ (compatibility condition)

sinh-Gordon should contain all information we need in boundary behavior and location of the poles.

Some more examples

 $S^2 ext{ strings } \longleftrightarrow ext{ sin Gordon}$ $S^3 ext{ strings } \longleftrightarrow ext{ complex sin Gordon}$ $AdS_5 ext{ strings } \longleftrightarrow ext{ generalized sinh Gordon}$ $CP^3 ext{ strings } \longleftrightarrow ext{ known}$ $AdS_5 \times S^5 ext{ strings } \longleftrightarrow ext{ system of generalized sin(h) Gordon}$

AdS_3 projection

We focus on strings in $AdS_3 \times S^3$. It turns out that the solution depends on four real parameters, two for the sphere projection and two for the AdS_3 . Let us call these parameters

 $\theta, \theta_s, \rho, \rho_s,$

where the subscript s means sphere. The AdS_3 projection is

 $Y = (\sin\theta\cosh\eta, \cos\theta\cosh\xi, \cos\theta\sinh\xi, \sin\theta\sinh\eta).$

AdS_3 projection

We focus on strings in $AdS_3 \times S^3$. It turns out that the solution depends on four real parameters, two for the sphere projection and two for the AdS_3 . Let us call these parameters

 $\theta, \theta_s, \rho, \rho_s,$

where the subscript s means sphere. The AdS_3 projection is

 $Y = (\sin\theta\cosh\eta, \cos\theta\cosh\xi, \cos\theta\sinh\xi, \sin\theta\sinh\eta).$

• η, ξ are linear combinations of the worldsheet coordinates σ, τ and they depend on ρ, θ .

- It depends on two parameters θ, ρ .
- \bullet the meaning of the parameter ρ will be discussed later.
- It is the intersection of the AdS hyperboloid and the surface $Y_0^2-Y_1^2=\cos^2\theta.$

 $\theta \to 0$ $\theta = \pi/4$ $\theta \to \pi/2$

Figure: Three different AdS_3 solutions. The plot in the middle corresponds to the solution of Alday-Maldacena.

- The AdS_3 surfaces has constant mean curvature.
- The shape of the surface only depends on one parameter, θ .
- It is not minimal, but it becomes minimal when $\theta=\pi/4$ and then we recover the Alday-Maldacena surface.
- They all have the same lightlike boundaries.

S^3 projection

Similarly, the S^3 projection is

 $X = (\sin \theta_s \cos \eta_s, \cos \theta_s \cos \xi_s, \cos \theta_s \sin \xi_s, \sin \theta_s \sin \eta_s).$

Figure: Three plots showing a stereographic projection of the above sphere solutions with different values of the parameter θ_s . The left plot shows that the case $\theta_s \rightarrow 0$ maps to a circle. The right plot is the solution for $\theta_s \rightarrow \pi/2$, which is a similar degenerate torus, but now projected to an infinite line in the stereographic projection.

Explanation of the meaning of ρ,ρ_s

They are parameters of the inner geometry. Consider the toy model

Figure: Two different curves with the same projections.

Explanation of the meaning of ρ,ρ_s

They are parameters of the inner geometry. Consider the toy model

Figure: Two different curves with the same projections.

- So, ρ, ρ_s control the relative orientation of the AdS_3 and S^3 projections.
- They count how many cm I move in S^3 , if I move 1 cm in AdS_3 .
- The total induded metric is conformal and equal to $(1 + \rho^2 + \rho_s^2)I_{2\times 2}$.

Regularized action

There are several methods to regularize, including dimensional regularization and using a cutoff r_c .

For our solution we have found that the regularized area is

$$S_{reg} = \frac{\sqrt{\lambda}}{2\pi} \frac{(1+\rho^2+\rho_s^2)\sin 2\theta}{\rho\sqrt{1+\rho^2}} I(r_c) ,$$

$$T(r_c) = \frac{1}{4} \left(\log \frac{r_c^2 \cos^2 \theta}{-4\pi^2 s}\right)^2 + \frac{1}{4} \left(\log \frac{r_c^2 \sin^2 \theta}{-4\pi^2 t}\right)^2 - \frac{1}{4} \left(\log \frac{s}{t}\right)^2 + \text{const.}$$

Regularized action

There are several methods to regularize, including dimensional regularization and using a cutoff r_c .

For our solution we have found that the regularized area is

$$S_{reg} = \frac{\sqrt{\lambda}}{2\pi} \frac{\left(1+\rho^2+\rho_s^2\right)\sin 2\theta}{\rho\sqrt{1+\rho^2}} I(r_c) ,$$
$$I(r_c) = \frac{1}{4} \left(\log \frac{r_c^2\cos^2\theta}{-4\pi^2 s}\right)^2 + \frac{1}{4} \left(\log \frac{r_c^2\sin^2\theta}{-4\pi^2 t}\right)^2 - \frac{1}{4} \left(\log \frac{s}{t}\right)^2 + \text{const.}$$

- ► *s*, *t* are the Mandelstam variables
- \blacktriangleright $I(r_c)$ has the same (s,t)-dependent part as the BDS formula with a suitable position dependent cutoff
- ▶ in general prefactor > 1, for $\rho \to \infty, \theta = \pi/4$ we get prefactor = 1

Spacelike strings with timelike AdS_3

By analytically continuing some of the parameters of our spacelike in total $AdS_3 \times S^3$ solution (with spacelike AdS_3 projection) we can get a new family of spacelike in total string solutions (with timelike AdS_3 projection).

Figure: The AdS_3 projection of different solutions. There are more solutions that are not presented here. A more detailed study and classification of solutions with lightlike boundaries is in progress.

Timelike in total strings

A second by-product of our construction is a set of new timelike surfaces in $AdS_3 \times S^3$, that are not minimally in AdS_3 and S^3 separately. We just plot some representatives.

Summary-Conclusions

- ▶ We have constructed a four parameter family of string solutions in $AdS_5 \times S^5$ whose boundary approaches the light-like tetragon and are a generalization of the solution of Alday-Maldacena. These minimal surfaces are space-like and flat. Their projections on each of the AdS_5 and S^5 have constant mean curvature. As the surface approaches the boundary of AdS_5 it wraps a torus inside S^5 an infinite number of times. The solutions therefore satisfy Neumann boundary conditions on S^5 .
- We have demonstrated the use of a general and powerful method (due to Pohlmeyer) that reduces the string system to a system with only physical degrees of freedom.
- Pohlmeyer reduction has some classification power (work in progress)
- Up to a prefactor our area is the same as the one of Alday-Maldacena with a position dependent cutoff.
- Are our solutions related to scattering amplitudes?
- Wilson loops?