Integrability and Non-planarity

C. Kristjansen

arXiv:0811.2150 [hep-th], (C.K., M. Orselli, K. Zoubos), arXiv:0903.3354 [hep-th], (P. Caputa, C.K., K. Zoubos), Work in progress

The Niels Bohr Institute
University of Copenhagen
Hannover, Feb. 22., 2010

Outline

- Integrability of the spectral problem of planar $\mathcal{N}=4$ SYM
- Beyond the planar limit
- Non-planar ABJM theory and integrability
- Non-planar ABJ theory, integrability and parity
- $\mathcal{N}=4$ SYM with gaugegroup $S O(N)$
- Summary and outlook

The spectral problem of planar $\mathcal{N}=4$ SYM

$\mathcal{N}=4$ SYM, gauge group $\mathrm{SU}(\mathrm{N}) \longleftrightarrow$ IIB strings on $A d S_{5} \times S^{5}$

$$
\underbrace{\lambda=g_{\mathrm{Y}}^{2} N,}_{\text {loop expansion }} \underbrace{\frac{1}{N}}_{\text {topological exp. }} \quad \underbrace{\frac{R^{2}}{\alpha^{\prime}}=\sqrt{\lambda}}_{\text {spectrum }}, \underbrace{g_{s}=\frac{\lambda}{N}}_{\text {interactions }}
$$

Local gauge invariant operators \longleftrightarrow string states
Conformal dimensions, $\Delta \longleftrightarrow$ energies of string states
The planar spectral problem of $\mathcal{N}=4$ SYM: INTEGRABLE
Determine $\Delta=\Delta(\lambda)$ for $N \rightarrow \infty$ Diagonalize dilatation operator D

Theme of the talk: What happens when we go beyond the planar limit (i.e. N finite)

Integrability of the planar spectral problem

Ex: $\operatorname{SU}(2)$ sector, one loop order, $\mathcal{O}=\operatorname{Tr}(Z Z Z X X X X Z Z X X X Z)$
[Minahan \&Zarembo '02]

| s_{2} | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 |

$$
\hat{D}=\frac{\lambda}{2} \sum_{n=1}^{L}\left(1-\bar{\sigma}_{n} \cdot \bar{\sigma}_{n+1}\right)=\lambda \sum_{n=1}^{L}\left(1-P_{n, n+1}\right) \equiv \lambda \sum_{n=1}^{L} \hat{H}_{n, n+1}
$$

Conserved charges: $\exists \hat{Q}_{i}, \quad i=1, \ldots L: \quad\left[\hat{Q}_{i} \cdot \hat{Q}_{j}\right]=0$

$$
\hat{Q}_{1}=\sum_{n} e^{i \hat{P}_{n}}, \quad \hat{Q}_{2}=\hat{D}
$$

$\hat{Q}_{3}=\sum_{\mathrm{n}}\left[\hat{\mathrm{H}}_{\mathrm{n}, \mathrm{n}+1}, \hat{\mathrm{H}}_{\mathrm{n}+1, \mathrm{n}+2}\right]=\overbrace{\mathrm{n} \mathrm{n}+1 \mathrm{n}+2}$
\hat{Q}_{m} :

Beyond one-loop order

Higher orders in λ :
Spin chain with long range interactions
Order λ^{n} : interactions between $n+1$ nearest neighbours
Still integrable:
\exists conserved charges $Q_{i}, i=1, \ldots, L$:
at n-loop order: $Q_{i}=Q_{i}^{0}+\lambda Q_{i}^{1}+\ldots+\lambda^{n} Q_{i}^{n}$,

$$
\left[Q_{i}, Q_{j}\right]=\mathcal{O}\left(\lambda^{n+1}\right), \quad Q_{i}^{n} \text { of range }(i+n)
$$

(Almost) proved to be true at any loop order
Discovery: Observation of otherwise unexplained degeneracies in the spectrum [Beisert, c.k. \& Staudacher '03]
$\hat{P} \operatorname{Tr}\left(Z^{3} X^{2} Z X\right)=\operatorname{Tr}\left(X Z X^{2} Z^{3}\right)=\operatorname{Tr}\left(Z^{3} X Z X^{2}\right), \quad \hat{P}^{2}=1$
$[\hat{P}, \hat{H}]=0$, i.e. eigenstates of \hat{H} of definite parity, $P= \pm 1$
Observation: Pairs of operators with opposite parity but the same energy. Survive loop corrections.
Explanation: The existence of \hat{Q}_{3}, i.e. integrability
$\mathrm{Q}_{3}=\sum_{\mathrm{n}}\left[\mathrm{H}_{\mathrm{n}, \mathrm{n}+1}, \mathrm{H}_{\mathrm{n}+1, \mathrm{n}+2}\right]=$

$\left\{\hat{Q}_{3}, P\right\}=0, \quad\left[\hat{Q}_{3}, \hat{H}\right]=0$
The operators in a degenerate pair are connected via \hat{Q}_{3}.

Beyond the planar limit

$\mathcal{O}=\operatorname{Tr}(X \ldots X Z \ldots) \operatorname{Tr}(X \ldots X Z \ldots) \subset S U(2)$ sector.
[Constable et al '02], [Beisert, C.K., Plefka, Semenoff \& Staudacher '02]

$$
\begin{array}{rlr}
\hat{D} & =-g_{\mathrm{YM}}^{2}: \operatorname{Tr}[Z, X][\check{Z}, \check{X}]:, \quad(\check{Z})_{\alpha \beta}=\frac{\delta}{\delta Z_{\beta \alpha}} \\
& =\lambda(D_{0}+\underbrace{\frac{1}{N} D_{+}}_{\text {adds a trace }}+\underbrace{\frac{1}{N} D_{-}}_{\text {removes a trace }})
\end{array}
$$

Origin: Quartic interaction between scalars
Example:

The non-planar part of \hat{D}

$$
D_{+}+D_{-}=\sum_{k} \sum_{l \neq k+1}\left(1-P_{k, l}\right) \Sigma_{k+1, l} \equiv \sum_{k} H_{k}^{(1)}
$$

$\frac{1}{N}$-corrections to short operators

Easy to evaluate

- $D_{+} \mathcal{O}, D_{-} \mathcal{O}$ involves a finite (small) number of operations
- Only diagonalization of finite-dim. matrix

Strategy:

- Consider closed set of operators. Ex: Length 8 with 3 excitations
- Find the planar eigenvalues and eigenstates (can be checked by Bethe eqns.).
- Write down \hat{D} in the basis of planar eigenstates and do perturbation theory in $\frac{1}{N}$.

corrections to short operators-Lessons learned

Lessons learned

- Δ does not always have a well-defined expansion in λ and $\frac{1}{N}$ but D has. (Higher loop effect.)
[Ryzhov '01], [Arutyunov et al. '02] $\left[\begin{array}{c}\text { Bianchi, Kovacs } \\ \text { Rossi,Stanev '02 }\end{array}\right]\left[\begin{array}{c}\text { Beisert, C.K. } \\ \text { Staudacher '03 }\end{array}\right]$
- Degeneracies between single and double trace states (of equal parity) lead to $\frac{1}{N}$ as opposed to $\frac{1}{N^{2}}$ corrections.
- Including $\frac{1}{N}$ corrections, degeneracies between parity pairs are lifted, but still $[H, P]=0$
\Longrightarrow absence of Q_{3} (and integrability), at least in its previous form $\left[\begin{array}{c}\text { Beisert, c.K. } \\ \text { Staudacher } 03\end{array}\right]$

Conserved charges beyond the planar limit ?

$D=D^{0}+\frac{1}{N} D^{1}, \quad Q=Q^{0}+\frac{1}{N} Q^{1}$
Determine Q^{1} such that

$$
0=\left[D^{0}, Q^{1}\right]+\left[D^{1}, Q^{0}\right]
$$

Q^{1} must involve splitting and joining.
A natural guess: $\quad Q^{1}=\sum_{n=1}^{L}\left[D_{n}^{0}, D_{n+1}^{1}\right]+\left[D_{n}^{1}, D_{n+1}^{0}\right]$ where

$$
D_{n}^{0}=1-P_{n, n+1}, \quad D_{n}^{1}=\underbrace{\sum_{l \neq n+1}\left(1-P_{n, l}\right) \Sigma_{n, l}}_{\text {extremely non-local }},
$$

Very complicated - seems not to work Idea of the asymptotic S-matrix does also not work

ABJM theory — Summary

ABJM theory: 3D $\mathcal{N}=6 U(N)_{k} \times \overline{U(N)}_{-k}$ superconformal CSM [Aharony, Bergman, Jafferis \& Maldacena '08]
't Hooft expansion:

$$
\underbrace{\frac{1}{N}}_{\text {topological }}
$$

In $S U(2) \times S U(2)$ sector:

$$
\begin{gathered}
D_{\text {planar }}=\lambda^{2} \sum_{l=1}^{2 L}\left(1-P_{l, l+2}\right) \Longrightarrow \text { Planar parity pairs } \\
D_{\text {full }}=D_{\text {planar }}+\lambda^{2}(\frac{1}{N}\left(D_{+}+D_{-}\right)+\underbrace{\frac{1}{N^{2}}\left(D_{++}+D_{--}+D_{00}\right)}_{\text {New type of terms }})
\end{gathered}
$$

Degeneracies lifted at the non-planar level but parity conserved \Longrightarrow absence of Q_{3} (in its previous form) [c..., orselii zoubos o8]

ABJ theory — Summary

ABJ theory: $3 D, \mathcal{N}=6 U(N)_{k} \times \overline{U(M)}_{-k}$ superconformal CSM
[Aharony, Bergman \& Jafferis '08]
't Hooft expansion: $\lambda=\frac{N}{k}, \bar{\lambda}=\frac{M}{k}, \frac{1}{N}, \frac{1}{M}$.
In $S U(2) \times S U(2)$ sector:

$$
\begin{aligned}
& D_{\text {planar }}=\lambda \bar{\lambda} \sum_{l=1}^{2 L}\left(1-P_{l, l+2}\right) \Longrightarrow \text { No signs of parity breaking } \\
& D_{\text {full }}=D_{\text {planar }}+\lambda \bar{\lambda}\left(\frac{1}{\mathcal{M}}\left(D_{+}+D_{-}\right)+\frac{1}{\mathcal{M}^{2}}\left(D_{++}+D_{--}+D_{00}\right)\right) \\
& \text { where } \frac{1}{\mathcal{M}}=\frac{1}{N} \text { or } \frac{1}{M} \text { and } \frac{1}{\mathcal{M}^{2}}=\frac{1}{M^{2}} \text { or } \frac{1}{N^{2}} \text { or } \frac{1}{M N} .
\end{aligned}
$$

Parity is broken at the non-planar level
(and degeneracies lifted). [Caputa, c..., \& Zoubos '09]

Other gauge groups

$\mathcal{N}=4 \mathrm{SYM}$, gauge group $\mathrm{SO}(\mathrm{N}) \longleftrightarrow \mathrm{IIB}$ strings on $A d S_{5} \times R P^{5}$ [Witten '98]
$R P^{5}=S^{5} / Z_{2}, \quad\left(z^{i} \equiv-z^{i}\right)$, orientifold
Planar spectral problem \subset planar spectral problem for $S U(N)$
Parity is gauged:

$$
X^{T}=-X \Longrightarrow \hat{P} \operatorname{Tr}\left(X_{i_{1}} \ldots X_{i_{L}}\right)=(-1)^{L} \operatorname{Tr}\left(X_{i_{1}} \ldots X_{i_{L}}\right)
$$

New $\frac{1}{N}$-effects not involving splitting and joining
Feynman diags w/ cross-caps \longleftrightarrow non-orientable world sheets

$\frac{1}{N}$ effects for gauge group $S O(N)$

Restrict to $S U(2)$ sector: $\mathcal{O}=\operatorname{Tr}(X \ldots X Z \ldots) \operatorname{Tr}(X \ldots X Z \ldots)$

$$
\begin{aligned}
\hat{D} & =-g_{Y M}^{2} \operatorname{Tr}[Z, X][\check{Z}, \check{X}], \quad(\check{Z})_{\alpha \beta} Z_{\gamma \epsilon}=\frac{1}{\sqrt{2}}\left(\delta_{\alpha \epsilon} \delta_{\beta \gamma}-\delta_{\alpha \gamma} \delta_{\beta \epsilon}\right) \\
& =\lambda(D_{0}+\frac{1}{N} D_{+}+\frac{1}{N} \tilde{D}_{-}+\underbrace{\left.\frac{1}{N} D_{\text {fif }}\right)}_{\text {Acts inside a trace }}
\end{aligned}
$$

$$
\begin{aligned}
D_{f l i p} \cdot \operatorname{Tr}(X W Z Y) & =\operatorname{Tr}\left(X Z W^{T} Y\right)+\operatorname{Tr}\left(X Z Y W^{T}\right) \\
& -\operatorname{Tr}\left(X W^{T} Y Z\right)-\operatorname{Tr}\left(X Y W^{T} Z\right)
\end{aligned}
$$

Energy corrections generically of order $\frac{1}{N}: \quad E_{1}=\langle\mathcal{O}| D_{\text {flip }}|\mathcal{O}\rangle$

Search for integrability with gauge group $S O(N)$

- No degenerate parity pairs (parity is gauged).
- Degeneracy between single and multiple trace states lifted by $\frac{1}{N}$-corrections.
- Considering only the perturbation $D_{\text {flip }}$ (restrict to single trace states, not degenerate with multi-trace states)
- Try to construct conserved charges $Q=Q^{0}+\frac{1}{N} Q^{1}$

$$
0=\left[D_{0}, Q^{1}\right]+\left[D_{\text {flip }}, Q^{0}\right], \quad \text { does not work }
$$

- Try to look for perturbed Bethe equations

Considering only $D_{\text {fifp }}$

Two excitation states: $O_{p}^{J}=\operatorname{Tr}\left(X Z^{p} X Z^{J-p}\right), J$ even
Planar eigenstates: $D_{0}\left|n^{J}\right\rangle=E_{n}^{0}\left|n^{J}\right\rangle$

$$
\begin{aligned}
& \left|n^{J}\right\rangle=\frac{1}{J+1} \sum_{p=0}^{J} \cos \left(\frac{\pi n(2 p+1)}{J+1}\right) O_{p}^{J}, \quad 0 \leq n \leq \frac{J}{2} \\
& E_{n}^{0}=8 \sin ^{2}\left(\frac{\pi n}{J+1}\right)
\end{aligned}
$$

Non-planar correction: $E_{n}=E_{n}^{0}+\frac{1}{N} E_{n}^{\text {flip }}$ (prediction for strings)

$$
\begin{aligned}
E_{n}^{\text {fip }} & =\left\langle n^{J}\right| D_{\text {fip }}\left|n^{J}\right\rangle \\
& =\underbrace{2 \sin ^{2}\left(\frac{\pi n}{J+1}\right)}_{\text {correction of disp. rel.? }}
\end{aligned}
$$

$$
-\underbrace{\frac{1}{J+1}\left\{4 \tan ^{2}\left(\frac{\pi n}{J+1}\right)-\tan ^{2}\left(\frac{2 \pi n}{J+1}\right)-\cos \left(\frac{2 \pi n}{J+1}\right)\right\}}_{\text {correction of momenta? }}
$$

$E_{n}^{i / p}$ from a perturbed Bethe ansatz?

Bethe eqn. for length L and M excitations

$$
e^{i p_{k} L}=\prod_{m \neq k}^{M} \frac{u_{k}-u_{m}+\frac{i}{2}}{u_{k}-u_{m}-\frac{i}{2}}, \quad \text { where } \quad e^{i p}=\frac{x\left(u+\frac{i}{2}\right)}{x\left(u-\frac{i}{2}\right)}
$$

Dispersion relation: $E=16 \sin ^{2}\left(\frac{p}{2}\right)+\delta E(p)$
Parametrizing $x(u)=u\left(1-\frac{1}{N} f(u)\right)$ we find from explicit solution

$$
f\left(u+\frac{i}{2}\right)-f\left(u-\frac{i}{2}\right)=-i \frac{1}{16 u^{3}\left(4 u^{2}-1\right)}
$$

From symmetry arguments

$$
f\left(u+\frac{i}{2}\right)+f\left(u-\frac{i}{2}\right)=2 i u\left(f\left(u+\frac{i}{2}\right)-f\left(u-\frac{i}{2}\right)\right)
$$

No solution - equations incompatible

Summary and outlook

- No sign of integrability beyond the planar limit (yet?)
- Need to rethink the concept of integrability when going beyond the planar limit

