Computation of the 2-loop Coefficient with the Pure Spinor Formalism

Carlos R. Mafra

Max Planck Institut für Gravitationsphysik
Albert Einstein Institut

Motivation

- Compute the overall coefficient of the superstring 2-loop amplitude from first principles (Work in progress with H. Gomez)
- Check 2-loop unitarity in the PS formalism
- Derive general formulae and go beyond (higher points/higher loops)

Motivation

- Compute the overall coefficient of the superstring 2-loop amplitude from first principles (Work in progress with H. Gomez)
- Check 2-loop unitarity in the PS formalism
- Derive general formulae and go beyond (higher points/higher loops)

Motivation

- Compute the overall coefficient of the superstring 2-loop amplitude from first principles (Work in progress with H. Gomez)
- Check 2-loop unitarity in the PS formalism
- Derive general formulae and go beyond (higher points/higher loops)

History of PS computations

Computation of superstring scattering amplitudes up to overall coefficients:

- 4-pt @ 2-loop (Berkovits,C.M.)
- 4-pt @ 1-loop (Berkovits,C.M.)
- 4-pt: tree-level, 1-loop and 2-loop are proportional (C.M.)
- Anomaly, minimal \leftrightarrow non-minimal (Berkovits,C.M.)
- 5-pt @ 1-loop (C.M., C. Stahn)
- 5-pt @ tree-level and SUSY BCJ relations (C.M.)

Elegant SUSY expressions for kinematic factors in pure spinor superspace:

$$
K_{0}=-\left\langle\left(\lambda A^{1}\right)\left(\lambda \gamma^{m} W^{2}\right)\left(\lambda \gamma^{n} W^{3}\right) \mathcal{F}_{m n}^{4}\right\rangle
$$

Present

- Computation of overall coefficients require knowing the measures of the pure spinor variables and their normalizations, e.g.

$$
\begin{gathered}
{[d \lambda] T_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}}=c_{\lambda} \epsilon_{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} d \lambda^{\rho_{1} \ldots d \lambda^{\rho_{11}}}} \\
c_{\lambda}=\left(\frac{\alpha^{\prime}}{2}\right)^{-2} \frac{1}{11!}\left(\frac{A_{g}}{4 \pi^{2}}\right)^{11 / 2}
\end{gathered}
$$

- Integration over pure spinor space (H. Gomez, 2009)

$$
\int[d \lambda][d \bar{\lambda}](\lambda \bar{\lambda})^{n} \mathrm{e}^{-(\lambda \bar{\lambda})}=\frac{(7+n)!}{7!60}\left(\frac{2 \pi}{A_{g}}\right)^{11}
$$

The goal

- Compute the coefficients tree-level, one- and two-loop coefficients C_{0}, C_{1} and C_{2} (omit $\left.(2 \pi)^{10} \delta^{(10)}(k)\right)$

$$
\begin{gathered}
A_{0}=\kappa^{4} e^{-2 \mu} C_{0}\left(\frac{\alpha^{\prime}}{2}\right)^{8} K_{0} \bar{K}_{0} C(s, t, u), \\
A_{1}=C_{1} \kappa^{4} K_{0} \bar{K}_{0}\left(\frac{\alpha^{\prime}}{2}\right)^{8} \int \frac{d^{2} \tau}{\tau_{2}^{5}} \prod_{i=2}^{4} \int d^{2} z_{i} \prod_{i<j}^{4} F_{1}\left(z_{i}, z_{j}\right)^{\alpha k^{i} \cdot k^{j}} \\
A_{2}=C_{2} \kappa^{4} e^{2 \lambda} K_{0} \bar{K}_{0}\left(\frac{\alpha^{\prime}}{2}\right)^{10} \int_{\mathcal{M}_{2}} \frac{d^{2} \Omega_{l J}}{\left(\operatorname{det} \operatorname{Im} \Omega_{l J}\right)^{5}} \int_{\Sigma_{4}}\left|\mathcal{Y}_{s}\right|^{2} \prod_{i<j} F_{2}\left(z_{i}, z_{j}\right)^{\alpha k^{i} .}
\end{gathered}
$$

The goal

- RNS: 2-loop coefficient found indirectly by factorization (D'Hoker, Gutperle, Phong, 2005)

$$
C_{1}^{2}=8 \pi^{2} C_{0} C_{2}
$$

- Too difficult for direct computation (functional determinants)
- Due to g_{s} dependence, normalization of tree-level amp matters
- Do amplitudes in PS formalism obey the factorization constraint? (unitarity)

The goal

- RNS: 2-loop coefficient found indirectly by factorization (D'Hoker, Gutperle, Phong, 2005)

$$
C_{1}^{2}=8 \pi^{2} C_{0} C_{2}
$$

- Too difficult for direct computation (functional determinants)
- Due to g_{s} dependence, normalization of tree-level amp matters
- Do amplitudes in PS formalism obey the factorization constraint? (unitarity)

Non-Minimal Pure Spinor Formalism

Action (Berkovits, 2005)

$$
S=\int d^{2} z\left(\frac{1}{2} \partial X^{m} \bar{\partial} X_{m}+p_{\alpha} \bar{\partial} \theta^{\alpha}-w_{\alpha} \overline{\bar{\partial}} \lambda^{\alpha}-\bar{w}^{\alpha} \overline{\partial \lambda}_{\alpha}+s^{\alpha} \bar{\partial} r_{\alpha}\right)
$$

With bosonic pure spinors $\lambda^{\alpha}, \bar{\lambda}_{\alpha}$

$$
\left(\lambda \gamma^{m} \lambda\right)=0
$$

and a constrained fermionic r_{α}

$$
\left(\bar{\lambda} \gamma^{m} r\right)=0
$$

Pure Spinor Formalism

Some important definitions for amplitude computations:

- Lorentz current

$$
N^{m n}=\frac{\alpha \prime}{4}\left(w \gamma^{m n} \lambda\right)
$$

- Supersymmetric momentum

$$
\Pi^{m}=\partial X^{m}+\frac{1}{2}\left(\theta \gamma^{m} \partial \theta\right)
$$

- Supersymmetric derivative

$$
D_{\alpha}=\frac{\partial}{\partial \theta^{\alpha}}+\frac{1}{2}\left(\theta \gamma^{m}\right)_{\alpha} \partial_{m}
$$

Pure Spinor Formalism

- Supersymmetric Green-Schwarz constraint

$$
d_{\alpha}=\frac{\alpha^{\prime}}{2} p_{\alpha}-\frac{1}{2}\left(\gamma^{m} \theta\right)_{\alpha} \partial X_{m}-\frac{1}{8}\left(\gamma^{m} \theta\right)_{\alpha}\left(\theta \gamma_{m} \partial \theta\right)
$$

- The b-ghost is a composite operator...

$$
b_{\mathrm{non}-\min }=\ldots-\frac{1}{192(\lambda \bar{\lambda})^{2}}\left(\bar{\lambda} \gamma^{m n p} r\right)\left(d \gamma_{m n p} d\right)+\ldots
$$

- Ghost current

$$
\boldsymbol{J}=\boldsymbol{w}_{\alpha} \lambda^{\alpha}-\overline{\boldsymbol{w}}^{\alpha} \bar{\lambda}_{\alpha}
$$

Pure Spinor Formalism

Relevant OPE's

$$
\begin{gathered}
X^{m}(z, \bar{z}) X^{n}(w, \bar{w}) \longrightarrow-\frac{1}{2} \eta^{m n} \ln |z-w|^{2} \\
N^{m n}(z) \lambda^{\alpha}(y) \longrightarrow \frac{\alpha \prime}{4} \frac{\left(\gamma^{m n} \lambda\right)^{\alpha}}{z-y} \\
d_{\alpha}(z) V(y, \theta) \longrightarrow \frac{D_{\alpha} V(y, \theta)}{z-y} \\
\Pi^{m}(z) V(y, \theta) \longrightarrow \frac{\partial^{m} V(y, \theta)}{z-y} \\
J(z) T(y) \longrightarrow \frac{3}{(z-y)^{3}}+\frac{J(y)}{(z-y)^{2}}
\end{gathered}
$$

- The same ghost number anomaly as in bosonic string theory!

Issues of RNS and GS not present

Space-time SUSY

The pure spinor formalism has manifest space-time supersymmetry

- Scattering amplitudes will result in superspace expressions
- Only one computation for all multiplet states

Covariant BRST Quantization

$$
Q_{\mathrm{BRST}}=\oint \lambda^{\alpha} d_{\alpha}+\bar{w}^{\alpha} r_{\alpha}
$$

Topological Prescription for Scattering Amplitudes

- Non-minimal pure spinor formalism is a $N=2 \hat{c}=3$ string theory (Berkovits, 2005)
- Topological string theory prescription to compute amplitudes
- Massless On-shell Vertex Operators:
- Unintegrated

$$
V=\kappa \lambda^{\alpha} A_{\alpha}(X, \theta), \quad Q V=0
$$

- Integrated

$$
U=\kappa \int d z\left(\partial \theta^{\alpha} A_{\alpha}+A_{m} \Pi^{m}+d_{\alpha} W^{\alpha}+\frac{1}{2} N^{m n} \mathcal{F}_{m n}\right), \quad Q U=\partial V
$$

- Where $A_{\alpha}(x, \theta), A_{m}(x, \theta), W^{\alpha}(x, \theta)$ and $\mathcal{F}_{m n}(x, \theta)$ are the SYM superfields

$$
\begin{gathered}
D_{\alpha} A_{\beta}+D_{\beta} A_{\alpha}=\gamma_{\alpha \beta}^{m} A_{m}, \quad D_{\alpha} A_{m}=\left(\gamma_{m} W\right)_{\alpha}+k_{m} A_{\alpha} \\
D_{\alpha} \boldsymbol{W}^{\beta}=\frac{1}{4}\left(\gamma^{m n}\right)_{\alpha}^{\beta} \mathcal{F}_{m n}, \quad D_{\alpha} \mathcal{F}_{m n}=2 k_{[m}\left(\gamma_{n]} W\right)_{\alpha}
\end{gathered}
$$

θ 's all over the place

SYM Superfields θ-Expansion

$$
\begin{gathered}
A_{\alpha}(x, \theta)=\frac{1}{2} a_{m}\left(\gamma^{m} \theta\right)_{\alpha}-\frac{1}{3}\left(\xi \gamma_{m} \theta\right)\left(\gamma^{m} \theta\right)_{\alpha}-\frac{1}{32} F_{m n}\left(\gamma_{p} \theta\right)_{\alpha}\left(\theta \gamma^{m n p} \theta\right)+\ldots \\
\begin{array}{c}
A_{m}(x, \theta)= \\
a_{m}-\left(\xi \gamma_{m} \theta\right)-\frac{1}{8}\left(\theta \gamma_{m} \gamma^{p q} \theta\right) F_{p q}+\frac{1}{12}\left(\theta \gamma_{m} \gamma^{p q} \theta\right)\left(\partial_{p} \xi \gamma_{q} \theta\right)+\ldots \\
W^{\alpha}(x, \theta)=\xi^{\alpha}-\frac{1}{4}\left(\gamma^{m n} \theta\right)^{\alpha} F_{m n}+\frac{1}{4}\left(\gamma^{m n} \theta\right)^{\alpha}\left(\partial_{m} \xi \gamma_{n} \theta\right) \\
\\
\quad+\frac{1}{48}\left(\gamma^{m n} \theta\right)^{\alpha}\left(\theta \gamma_{n} \gamma^{p q} \theta\right) \partial_{m} F_{p q}+\ldots \\
\mathcal{F}_{m n}(x, \theta)= \\
F_{m n}-2\left(\partial_{[m} \xi \gamma_{n]} \theta\right)+\frac{1}{4}\left(\theta \gamma_{[m} \gamma^{p q} \theta\right) \partial_{n]} F_{p q}+\ldots,
\end{array}
\end{gathered}
$$

Scattering Amplitude Prescriptions

- Tree-level

$$
\left.\mathcal{A}=\left.\kappa^{4} e^{-2 \mu} \int d^{2} z_{4}\langle | \mathcal{N} V^{1}(0) V^{2}(1) V^{3}(\infty) U^{4}\left(z_{4}\right)\right|^{2}\right\rangle
$$

- One-loop

$$
\left.\mathcal{A}=\left.\frac{1}{2} \kappa^{4} \int d^{2} \tau_{1}\langle | \mathcal{N}\left(b, \mu_{1}\right) V^{1}(0) \prod_{i=2}^{4} \int d^{2} z_{i} U^{i}\left(z_{i}\right)\right|^{2}\right\rangle
$$

- Two-loops

$$
\left.\mathcal{A}_{2}=\left.\frac{1}{2} e^{2 \mu} \kappa^{4} \int \prod_{l=1}^{3} d^{2} \tau_{l} \prod_{i=1}^{4} \int d^{2} z_{i}\langle | \mathcal{N}\left(b, \mu_{l}\right) U^{i}\left(z_{i}\right)\right|^{2}\right\rangle
$$

Scattering Amplitude Prescriptions

- b-ghost insertion the same as in bosonic string theory

$$
\left(b, \mu_{j}\right)=\frac{1}{2 \pi} \int d^{2} y_{j} b_{z z} \mu_{j \bar{z}}^{z}
$$

- $0 \cdot \infty$ is regulated by

$$
\mathcal{N}=\mathrm{e}^{-(\lambda \bar{\lambda})-\left(w^{\prime} \bar{w}^{\prime}\right)-(r \theta)+\left(s^{\prime} d^{\prime}\right)}
$$

- 〈〉 denote integration over

$$
\prod_{l=1}^{g} \int[d \theta]\left[d d^{\prime}\right][d r]\left[d s^{\prime}\right]\left[d \bar{w}^{\prime}\right]\left[d w^{\prime}\right][d \lambda][d \bar{\lambda}]
$$

Measures for zero-modes

$$
\begin{gathered}
{[d \lambda] T_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}}=c_{\lambda} \epsilon_{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} d \lambda^{\rho_{1}} \ldots d \lambda^{\rho_{11}}} \\
{[d \bar{\lambda}] \bar{T}^{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}}=c_{\bar{\lambda}} \epsilon^{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} d \bar{\lambda}_{\rho_{1} \ldots} d \bar{\lambda}_{\rho_{11}}} \\
{[d \omega]=c_{\omega} T_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}} \epsilon^{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} d \omega_{\rho_{1} \ldots} \ldots \omega_{\rho_{11}}} \\
{[d \bar{W}] T_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}}=c_{\bar{W}} \epsilon_{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} d \bar{W}^{\rho_{1} \ldots d \bar{w}^{\rho_{11}}}} \\
\left.[d r]=c_{r} \bar{T}^{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}} \epsilon_{\alpha_{1} \ldots \alpha_{5} \delta_{1} \ldots \delta_{11}} \partial_{r}^{\delta_{1}} \ldots \partial_{r}^{\delta_{11}}\right]=c_{s} T_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}} \epsilon_{1}^{\alpha_{1} \ldots \alpha_{5} \rho_{1} \ldots \rho_{11}} \partial_{\rho_{1}}^{s^{\prime}} \ldots \partial_{\rho_{11}}^{s^{\prime}} \\
{[d \theta]=c_{\theta} d^{16} \theta, \quad\left[d d^{\prime}\right]=c_{d} d^{16} d^{\prime}}
\end{gathered}
$$

$$
\begin{gathered}
c_{\lambda}=\left(\frac{\alpha^{\prime}}{2}\right)^{-2} \frac{1}{11!}\left(\frac{A_{g}}{4 \pi^{2}}\right)^{11 / 2} \quad c_{\omega}=\left(\frac{\alpha^{\prime}}{2}\right)^{2} \frac{\left(4 \pi^{2}\right)^{-11 / 2}}{11!5!Z_{g}^{11 / g}} \\
c_{\bar{\lambda}}=\left(\frac{\alpha^{\prime}}{2}\right)^{2} \frac{2^{6}}{11!}\left(\frac{A_{g}}{4 \pi^{2}}\right)^{11 / 2} \quad c_{\bar{w}}=\left(\frac{\alpha^{\prime}}{2}\right)^{-2} \frac{\left(4 \pi^{2}\right)^{-11 / 2}(\lambda \bar{\lambda})^{3}}{11!Z_{g}^{11 / g}} \\
c_{r}=\left(\frac{\alpha^{\prime}}{2}\right)^{-2} \frac{R}{11!5!}\left(\frac{2 \pi}{A_{g}}\right)^{11 / 2} \quad c_{s}=\left(\frac{\alpha^{\prime}}{2}\right)^{2} \frac{(2 \pi)^{11 / 2}}{2^{6} 11!5!(\lambda \bar{\lambda})^{3}} Z_{g}^{11 / g} R^{-1} \\
c_{\theta}=\left(\frac{\alpha^{\prime}}{2}\right)^{4}\left(\frac{2 \pi}{A_{g}}\right)^{16 / 2} \quad c_{d}=\left(\frac{\alpha^{\prime}}{2}\right)^{-4}(2 \pi)^{16 / 2} Z_{g}^{16 / g}
\end{gathered}
$$

A_{g} is the area of the Riemann surface and

$$
Z_{g}=\frac{1}{\sqrt{\operatorname{det}(2 \operatorname{Im}(\Omega / J))}}
$$

- They are measures in the phase space like the standard $\frac{d x}{\sqrt{2 \pi}} \frac{d p}{\sqrt{2 \pi}}$ in quantum mechanics (H. Gomez, 2009)
- 11 ! are due to number of d.o.f, 5 ! are due to contractions of $T_{\alpha_{1} \ldots \alpha_{5}}$
- Z_{g} appear to make basis of holomorphic 1-forms orthonormal
- Integration over non zero modes $(\operatorname{det} \partial \bar{\partial})^{-11-11+16+11}=(\operatorname{det} \partial \bar{\partial})^{5}$ cancels $(\operatorname{det} \partial \bar{\partial})^{-5}$ from exponential factors in the vertices
- Use the following formula for their combined result

$$
\left\langle\prod_{i=1}^{4}: e^{i k \cdot x}:\right\rangle_{g}=(2 \pi)^{10} \delta^{(10)}(k) \frac{A_{g}^{5}}{\left(2 \pi^{2} \alpha^{\prime}\right)^{5}} \prod_{i<j} F_{g}\left(z_{i}, \bar{z}_{j}\right)^{\alpha k^{i} \cdot k^{j}}
$$

- No need for difficult determinant computations!
- Integration over pure spinor space (H. Gomez, 2009)

$$
\int[d \lambda][d \bar{\lambda}](\lambda \bar{\lambda})^{n} \mathrm{e}^{-(\lambda \bar{\lambda})}=\frac{(7+n)!}{7!60}\left(\frac{2 \pi}{A_{g}}\right)^{11}
$$

therefore

$$
\begin{aligned}
& N_{n}^{(g)}=\int[d \theta][d r][d \lambda][d \bar{\lambda}] \frac{e^{-(\lambda \bar{\lambda})-(r \theta)}}{(\lambda \bar{\lambda})^{3-n}}\left(\lambda^{3} \theta^{5}\right) \\
& =2^{7} R\left(\frac{2 \pi}{A_{g}}\right)^{5 / 2}\left(\frac{\alpha^{\prime}}{2}\right)^{2} \frac{(7+n)!}{7!}, \quad n \geq 0
\end{aligned}
$$

- A_{g} cancels out in $\left|N_{n}^{(g)}\right|^{2}\left\langle\prod_{i=1}^{4}: e^{i k \cdot x}:\right\rangle_{g}$
- Closed string amplitudes don't depend on the area

Four gravitons at tree-level

Tree-level 4-graviton computation

- Computed up to overall coeff in 2008 (with several ids in pure spinor superspace) (C.M.)
- Overall coefficient easy to fix

$$
\begin{gathered}
A_{0}=C_{0} \kappa^{4} e^{-2 \mu}\left(\frac{\alpha^{\prime}}{2}\right)^{8} K^{\mathrm{RNS}} \bar{K}^{\mathrm{RNS}} C(s, t, u), \\
C_{0}=\left(\frac{\sqrt{2}}{2^{12} \pi^{6} \alpha^{\prime 5}}\right)
\end{gathered}
$$

- Trivial agreement with RNS

Massless 4-point one-loop amplitude

Massless 4-point one-loop amplitude

- Computed with the minimal pure spinor formalism (Berkovits 2004)

$$
\begin{aligned}
K_{1}= & \int d^{16} \theta\left(\epsilon T^{-1}\right)_{\left[\rho_{1} \ldots \rho_{11}\right]}^{((\alpha \beta \gamma))} \theta^{\rho_{1}} \ldots \theta^{\rho_{11}}\left(\gamma_{m n p q r}\right)_{\beta \gamma} \times \\
& {\left[A_{1 \alpha}(\theta)\left(W_{2}(\theta) \gamma^{m n p} W^{3}(\theta)\right) \mathcal{F}_{4}^{q r}(\theta)\right] }
\end{aligned}
$$

and shown to agree with the RNS and GS results (C.M. 2005)

$$
K_{1}=\left\langle(\lambda A)\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right) \mathcal{F}_{m n}\right\rangle=t_{8} F^{4}+\ldots
$$

- Computed also in the non-minimal pure spinor formalism (Berkovits 2005, Berkovits \& C.M. 2006)

How to get it (Non-minimal)

- One can compute it quickly by using symmetry alone
- Recall the regulator

$$
N=\exp (-(\lambda \bar{\lambda})-(r \theta)-(w \bar{w})+(s d))
$$

- Zero modes:
- s^{α} has 11 zero-modes
- d_{α} has 16 zero-modes
- N contributes $11 s$ and $11 d$, the b-ghost $2 d$ and the external vertices 3 d's.
- Therefore one gets (λA) and $(d W)^{3}$ from the external vertices and $\left(\bar{\lambda} \gamma^{m n p} r\right)\left(d \gamma_{m n p} d\right)$ from the b-ghost

Unique contraction

There is only one Lorentz invariant contraction for these fields

$$
\left\langle\left(\bar{\lambda} \gamma_{m n p} D\right)(\lambda A)\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right)\left(\lambda \gamma^{p} W\right)\right\rangle
$$

Overall coefficient

- Computed in 2009 and agreement with RNS found (H. Gomez, 2009)
- However, $1 / 4$ mistake! (work in progress)

$$
\begin{gathered}
A_{1}=C_{1} \kappa^{4} K_{0} \bar{K}_{0}\left(\frac{\alpha^{\prime}}{2}\right)^{8} \int \frac{d^{2} \tau}{\tau_{2}^{5}} \prod_{i=2}^{4} \int d^{2} z_{i} \prod_{i<j}^{4} F_{1}\left(z_{i}, z_{j}\right)^{\alpha k^{i} \cdot k^{j}} \\
C_{1}=\frac{1}{2^{9} \pi^{2} \alpha^{\prime}}
\end{gathered}
$$

- Disagreement with RNS of D'Hoker, Gutperle and Phong!

$$
A_{1}^{\mathrm{PS}}=\frac{1}{4} A_{1}^{\mathrm{RNS}}
$$

Massless 4-point two-loop amplitude

Massless 4-point two-loop amplitude

- Can be computed quickly using zero-mode saturation (Berkovits, 2005)
- Kinematic factor

$$
K_{2}=\left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle
$$

- Shown to agree with RNS results of D'Hoker and Phong up to overall coefficient (Berkovits, C.M, 2005)
- Pure spinor superspace identity (C.M., 2008)

$$
K_{2}=-16\left(k^{1} \cdot k^{2}\right)\left\langle\left(\lambda A^{2}\right)\left(\lambda \gamma^{r} W^{1}\right)\left(\lambda \gamma^{s} W^{4}\right) \mathcal{F}_{r s}^{3}\right\rangle=-16\left(k^{1} \cdot k^{2}\right) K_{1}
$$

Massless 4-point two-loop amplitude

- Overall coeff: after lots of pure spinor covariant manipulations

$$
\begin{gathered}
A_{2}=C_{2} \kappa^{4} e^{2 \lambda} K_{0} K_{0}\left(\frac{\alpha^{\prime}}{2}\right)^{10} \int_{\mathcal{M}_{2}} \frac{d^{2} \Omega_{/ J}}{\left(\operatorname{det} \operatorname{Im} \Omega_{/ J}\right)^{5}} \int_{\Sigma_{4}}\left|\mathcal{Y}_{s}\right|^{2} \prod_{i<j} F_{2}\left(z_{i}, z_{j}\right)^{\alpha k^{\prime} .} \\
C_{2}=\frac{\sqrt{2}}{2^{10} \alpha^{\prime 5}}
\end{gathered}
$$

- Disagreement with RNS of D'Hoker, Gutperle and Phong again!

$$
A_{2}^{\mathrm{PS}}=\frac{1}{16} A_{2}^{\mathrm{RNS}}
$$

Was ist los?

- Work in progress possibilities:
((We made an embarrassing mistake
(2) The PS formalism is not unitary ($4=2^{2}$ at 1-loop and $16=2^{4}$ at 2-loops: $2^{2 g}$ spin structures...)
(3) D'Hoker et al. made a mistake...
- However, the PS amplitudes satisfy the same factorization condition!
- This is reassuring, as the factorization condition can be derived from S-duality (D'Hoker, Gutperle, Phong, 2005)
- RNS: 2-loop coefficient found by

- $1 / 4$ mistake in C_{1} leads to $1 / 16$ mistake in C_{2}

Was ist los?

- Work in progress possibilities:
(1) We made an embarrassing mistake
(2) The PS formalism is not unitary ($4=2^{2}$ at 1-loop and $16=2^{4}$ at 2-loops: $2^{2 g}$ spin structures...)
(3) D'Hoker et al. made a mistake...
- However, the PS amplitudes satisfy the same factorization condition!
- This is reassuring, as the factorization condition can be derived from S-duality (D'Hoker, Gutperle, Phong, 2005)
- RNS: 2-loop coefficient found by

$$
C_{2}=\frac{C_{1}^{2}}{8 \pi^{2} C_{0}}
$$

- $1 / 4$ mistake in C_{1} leads to $1 / 16$ mistake in C_{2}

