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Motivation

Compute the overall coefficient of the superstring 2-loop
amplitude from first principles (Work in progress with H. Gomez)
Check 2-loop unitarity in the PS formalism
Derive general formulae and go beyond (higher points/higher
loops)
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History of PS computations

Computation of superstring scattering amplitudes up to overall
coefficients:

4-pt @ 2-loop (Berkovits,C.M.)
4-pt @ 1-loop (Berkovits,C.M.)
4-pt: tree-level, 1-loop and 2-loop are proportional (C.M.)
Anomaly, minimal↔ non-minimal (Berkovits,C.M.)
5-pt @ 1-loop (C.M., C. Stahn)
5-pt @ tree-level and SUSY BCJ relations (C.M.)

Elegant SUSY expressions for kinematic factors in pure spinor
superspace:

K0 = −〈(λA1)(λγmW 2)(λγnW 3)F4
mn〉
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Present

Computation of overall coefficients require knowing the measures
of the pure spinor variables and their normalizations, e.g.

[dλ]Tα1α2α3α4α5 = cλεα1...α5ρ1...ρ11dλρ1 ...dλρ11

cλ =

(
α′

2

)−2 1
11!

(
Ag

4π2

)11/2

Integration over pure spinor space (H. Gomez, 2009)∫
[dλ][dλ](λλ)ne−(λλ) =

(7 + n)!

7! 60

(
2π
Ag

)11
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The goal

Compute the coefficients tree-level, one- and two-loop coefficients
C0, C1 and C2 (omit (2π)10δ(10)(k))

A0 = κ4e−2µC0

(
α′

2

)8

K0K 0C(s, t ,u),

A1 = C1κ
4K0K 0

(
α′

2

)8 ∫ d2τ

τ5
2

4∏
i=2

∫
d2zi

4∏
i<j

F1(zi , zj)
αk i ·k j

A2 = C2κ
4e2λK0K 0

(
α′

2

)10 ∫
M2

d2ΩIJ

(detImΩIJ)5

∫
Σ4

|Ys|2
∏
i<j

F2(zi , zj)
αk i ·k j
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The goal

RNS: 2-loop coefficient found indirectly by factorization (D’Hoker,
Gutperle, Phong, 2005)

C2
1 = 8π2C0C2,

Too difficult for direct computation (functional determinants)
Due to gs dependence, normalization of tree-level amp matters
Do amplitudes in PS formalism obey the factorization constraint?
(unitarity)
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Non-Minimal Pure Spinor Formalism

Action (Berkovits, 2005)

S =

∫
d2z

(
1
2
∂X m∂Xm + pα∂θα − wα∂λ

α − wα∂λα + sα∂rα

)
With bosonic pure spinors λα , λα

(λγmλ) = 0

and a constrained fermionic rα

(λγmr) = 0
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Pure Spinor Formalism

Some important definitions for amplitude computations:

Lorentz current
Nmn =

α′
4

(wγmnλ)

Supersymmetric momentum

Πm = ∂X m +
1
2

(θγm∂θ)

Supersymmetric derivative

Dα =
∂

∂θα
+

1
2

(θγm)α∂m
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Pure Spinor Formalism

Supersymmetric Green-Schwarz constraint

dα =
α′

2
pα −

1
2

(γmθ)α∂Xm −
1
8

(γmθ)α(θγm∂θ)

The b-ghost is a composite operator. . .

bnon−min = . . .− 1
192(λλ)2

(λγmnpr)(dγmnpd) + . . .

Ghost current
J = wαλ

α − wαλα
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Pure Spinor Formalism

Relevant OPE’s

X m(z, z)X n(w ,w) −→ −1
2
ηmn ln |z − w |2

Nmn(z)λα(y) −→ α′
4

(γmnλ)α

z − y

dα(z)V (y , θ) −→ DαV (y , θ)

z − y

Πm(z)V (y , θ) −→ ∂mV (y , θ)

z − y

J(z)T (y) −→ 3
(z − y)3 +

J(y)

(z − y)2

The same ghost number anomaly as in bosonic string theory!
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Issues of RNS and GS not present

Space-time SUSY
The pure spinor formalism has manifest space-time supersymmetry

Scattering amplitudes will result in superspace expressions
Only one computation for all multiplet states

Covariant BRST Quantization

QBRST =

∮
λαdα + wαrα,
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Topological Prescription for Scattering Amplitudes

Non-minimal pure spinor formalism is a N = 2 ĉ = 3 string theory
(Berkovits, 2005)
Topological string theory prescription to compute amplitudes

Massless On-shell Vertex Operators:
Unintegrated

V = κλαAα(X , θ), QV = 0

Integrated

U = κ

∫
dz
(
∂θαAα + AmΠm + dαW α +

1
2

NmnFmn

)
, QU = ∂V

Where Aα(x , θ),Am(x , θ),Wα(x , θ) and Fmn(x , θ) are the SYM
superfields

DαAβ + DβAα = γm
αβAm, DαAm = (γmW )α + kmAα

DαW β =
1
4

(γmn) β
α Fmn, DαFmn = 2k[m(γn]W )α
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θ’s all over the place

SYM Superfields θ-Expansion

Aα(x , θ) =
1
2

am(γmθ)α −
1
3

(ξγmθ)(γmθ)α −
1

32
Fmn(γpθ)α(θγmnpθ) + . . .

Am(x , θ) = am − (ξγmθ)− 1
8

(θγmγ
pqθ)Fpq +

1
12

(θγmγ
pqθ)(∂pξγqθ) + . . .

Wα(x , θ) = ξα − 1
4

(γmnθ)αFmn +
1
4

(γmnθ)α(∂mξγnθ)

+
1
48

(γmnθ)α(θγnγ
pqθ)∂mFpq + . . .

Fmn(x , θ) = Fmn − 2(∂[mξγn]θ) +
1
4

(θγ[mγ
pqθ)∂n]Fpq + . . .,
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Scattering Amplitude Prescriptions

Tree-level

A = κ4e−2µ
∫

d2z4〈|N V 1(0)V 2(1)V 3(∞)U4(z4)|2〉

One-loop

A =
1
2
κ4
∫

d2τ1〈|N (b, µ1)V 1(0)
4∏

i=2

∫
d2ziU i(zi)|2〉

Two-loops

A2 =
1
2

e2µκ4
∫ 3∏

I=1

d2τI

4∏
i=1

∫
d2zi〈|N (b, µI)U i(zi)|2〉
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Scattering Amplitude Prescriptions

b-ghost insertion the same as in bosonic string theory

(b, µj) =
1

2π

∫
d2yjbzzµ

z
j z

0 · ∞ is regulated by

N = e−(λλ)−(w Iw I)−(rθ)+(sId I)

〈 〉 denote integration over

g∏
I=1

∫
[dθ][dd I ][dr ][dsI ][dw I ][dw I ][dλ][dλ]
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Measures for zero-modes

[dλ]Tα1α2α3α4α5 = cλεα1...α5ρ1...ρ11dλρ1 ...dλρ11

[dλ]T
α1α2α3α4α5 = cλε

α1...α5ρ1...ρ11dλρ1 ...dλρ11

[dω] = cωTα1α2α3α4α5ε
α1...α5ρ1...ρ11dωρ1 ...dωρ11

[dw ]Tα1α2α3α4α5 = cwεα1...α5ρ1...ρ11dwρ1 ...dwρ11

[dr ] = cr T
α1α2α3α4α5

εα1...α5δ1...δ11∂
δ1
r ...∂

δ11
r

[dsI ] = csTα1α2α3α4α5ε
α1...α5ρ1...ρ11∂sI

ρ1
. . .∂sI

ρ11

[dθ] = cθd16θ, [dd I ] = cdd16d I
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cλ =

(
α′

2

)−2 1
11!

(
Ag

4π2

)11/2

cω =

(
α′

2

)2 (4π2)−11/2

11!5! Z 11/g
g

cλ =

(
α′

2

)2 26

11!

(
Ag

4π2

)11/2

cw =

(
α′

2

)−2 (4π2)−11/2(λλ)3

11! Z 11/g
g

cr =

(
α′

2

)−2 R
11!5!

(
2π
Ag

)11/2

cs =

(
α′

2

)2 (2π)11/2

2611!5!(λλ)3
Z 11/g

g R−1

cθ =

(
α′

2

)4(2π
Ag

)16/2

cd =

(
α′

2

)−4

(2π)16/2Z 16/g
g

Ag is the area of the Riemann surface and

Zg =
1√

det(2Im(ΩIJ))
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They are measures in the phase space like the standard dx√
2π

dp√
2π

in quantum mechanics (H. Gomez, 2009)
11! are due to number of d.o.f, 5! are due to contractions of Tα1...α5

Zg appear to make basis of holomorphic 1-forms orthonormal
Integration over non zero modes (det∂∂)−11−11+16+11 = (det∂∂)5

cancels (det∂∂)−5 from exponential factors in the vertices
Use the following formula for their combined result

〈
4∏

i=1

: eik ·x :〉g = (2π)10δ(10)(k)
A5

g

(2π2α′)5

∏
i<j

Fg(zi , z j)
αk i ·k j

No need for difficult determinant computations!
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Integration over pure spinor space (H. Gomez, 2009)∫
[dλ][dλ](λλ)ne−(λλ) =

(7 + n)!

7! 60

(
2π
Ag

)11

therefore

N(g)
n =

∫
[dθ][dr ][dλ][dλ]

e−(λλ)−(rθ)

(λλ)3−n
(λ3θ5)

= 27R
(

2π
Ag

)5/2(α′
2

)2 (7 + n)!

7!
, n ≥ 0,

Ag cancels out in |N(g)
n |2〈

∏4
i=1 : eik ·x :〉g

Closed string amplitudes don’t depend on the area
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Four gravitons at tree-level
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Tree-level 4-graviton computation

Computed up to overall coeff in 2008 (with several ids in pure
spinor superspace) (C.M.)
Overall coefficient easy to fix

A0 = C0κ
4e−2µ(

α′

2
)8K RNSK

RNS
C(s, t ,u),

C0 =

( √
2

212π6α′5

)
Trivial agreement with RNS
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Massless 4-point one-loop amplitude
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Massless 4-point one-loop amplitude

Computed with the minimal pure spinor formalism (Berkovits
2004)

K1 =

∫
d16θ(εT−1)

((αβγ))
[ρ1...ρ11]θ

ρ1 . . .θρ11(γmnpqr )βγ×[
A1α(θ)(W2(θ)γmnpW 3(θ))Fqr

4 (θ)
]

and shown to agree with the RNS and GS results (C.M. 2005)

K1 = 〈(λA)(λγmW )(λγnW )Fmn〉 = t8F 4 + . . .

Computed also in the non-minimal pure spinor formalism
(Berkovits 2005, Berkovits & C.M. 2006)
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How to get it (Non-minimal)

One can compute it quickly by using symmetry alone
Recall the regulator

N = exp (−(λλ)− (rθ)− (ww) + (sd))

Zero modes:
sα has 11 zero-modes
dα has 16 zero-modes

N contributes 11 s and 11 d , the b-ghost 2 d and the external
vertices 3 d ’s.
Therefore one gets (λA) and (dW )3 from the external vertices and
(λγmnpr)(dγmnpd) from the b-ghost

Unique contraction
There is only one Lorentz invariant contraction for these fields

〈(λγmnpD)(λA)(λγmW )(λγnW )(λγpW )〉
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Overall coefficient

Computed in 2009 and agreement with RNS found (H. Gomez,
2009)
However, 1/4 mistake! (work in progress)

A1 = C1κ
4K0K 0

(
α′

2

)8 ∫ d2τ

τ5
2

4∏
i=2

∫
d2zi

4∏
i<j

F1(zi , zj)
αk i ·k j

.

C1 =
1

29π2α′5

Disagreement with RNS of D’Hoker, Gutperle and Phong!

APS
1 =

1
4

ARNS
1
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Massless 4-point two-loop amplitude
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Massless 4-point two-loop amplitude

Can be computed quickly using zero-mode saturation (Berkovits,
2005)
Kinematic factor

K2 = 〈(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4)〉

Shown to agree with RNS results of D’Hoker and Phong up to
overall coefficient (Berkovits, C.M, 2005)
Pure spinor superspace identity (C.M., 2008)

K2 = −16(k1 · k2)〈(λA2)(λγr W 1)(λγsW 4)F3
rs〉 = −16(k1 · k2)K1
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Massless 4-point two-loop amplitude

Overall coeff: after lots of pure spinor covariant manipulations

A2 = C2κ
4e2λK0K 0

(
α′

2

)10 ∫
M2

d2ΩIJ

(detImΩIJ)5

∫
Σ4

|Ys|2
∏
i<j

F2(zi , zj)
αk i ·k j

C2 =

√
2

210α′5

Disagreement with RNS of D’Hoker, Gutperle and Phong again!

APS
2 =

1
16

ARNS
2
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Was ist los?

Work in progress possibilities:
1 We made an embarrassing mistake
2 The PS formalism is not unitary (4 = 22 at 1-loop and 16 = 24 at

2-loops: 22g spin structures. . . )
3 D’Hoker et al. made a mistake...

However, the PS amplitudes satisfy the same factorization
condition!

This is reassuring, as the factorization condition can be derived
from S-duality (D’Hoker, Gutperle, Phong, 2005)
RNS: 2-loop coefficient found by

C2 =
C2

1
8π2C0

1/4 mistake in C1 leads to 1/16 mistake in C2

C.R. Mafra (AEI) 2-loop coefficient 22 Feb 2010 29 / 29



Was ist los?

Work in progress possibilities:
1 We made an embarrassing mistake
2 The PS formalism is not unitary (4 = 22 at 1-loop and 16 = 24 at

2-loops: 22g spin structures. . . )
3 D’Hoker et al. made a mistake...

However, the PS amplitudes satisfy the same factorization
condition!

This is reassuring, as the factorization condition can be derived
from S-duality (D’Hoker, Gutperle, Phong, 2005)
RNS: 2-loop coefficient found by

C2 =
C2

1
8π2C0

1/4 mistake in C1 leads to 1/16 mistake in C2

C.R. Mafra (AEI) 2-loop coefficient 22 Feb 2010 29 / 29


	Introduction
	Brief Review of the Pure Spinor Formalism 
	Scattering Amplitudes with Pure Spinors
	Four gravitons at tree-level
	Four gravitons at one-loop
	Four gravitons at two-loops


