Spontaneous Partial Supersymmetry Breaking in N=2 Supergravity and String Theory

Hagen Triendl

II. Institut für theoretische Physik Universität Hamburg

Hannover, 23.02.2010

in collaboration with Jan Louis and Paul Smith arXiv:0911.5077, arXiv:1003.xxxx

Why are we interested in spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$?

- N = 2 supergravity in 4*d* is very restrictive. Which N = 1 effective theories can be constructed from N = 2 theories?
- For Minkowski vacua, spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ breaking is ruled out for supergravities constructed from superconformal tensor calculus. [Cecotti, Girardello, Porrati '84]

"Two into one won't go!"

• Ways to evade the no-go theorem have been found for simple examples, but the general picture remains unclear.

[Ferrara, Girardello, Porrati '95; Fre, Girardello, Pesando, Trigiante '96]

• In global $\mathcal{N} = 2$ theories, spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ breaking requires electric and magnetic FI-terms [Antoniadis, Partouche, Taylor '95]

Which role do magnetic charges play in the local case?

4 日 ト 4 冊 ト 4 戸 ト 4 戸 ト

Discussion in string theory

- Effective theories of type II flux compactifications are naturally $\mathcal{N}=2$ gauged supergravities in 4*d*
- Flux, torsion & non-geometric fluxes correspond to electric & magnetic gaugings in 4*d* [Polchinski, Strominger '95; Michelson '95]
- Another no-go theorem: [Gibbons '84; Maldacena, Nuñez '00]
 No stable Minkowski vacua in compactifications with flux/torsion in the absence of negative-energy sources
- In string theory, worldsheet instanton corrections might spoil the simple examples of spontaneous $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ breaking found in supergravity [Mayr '00]

What is the physical reason for no-go theorems?

How are these no-go theorems evaded?

When is spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ (in Minkowski space) possible?

Hagen Triendl (Universität Hamburg)

Spontaneous Partial SUSY Breaking

Hannover, 23.02.2010 4 / 18

$\mathcal{N}=2~gauged~supergravity$ [de Wit, Lauwers and van Proeyen '85; Andrianopoli et al. '96]

- Gravity mult.: 1 metric $g_{\mu\nu}$, 2 gravitini $\psi_{\mu\mathcal{A}}$, 1 vector A^0_{μ}
- Vector mult.: 1 vector A_{μ}^{i} , 2 fermions λ^{iA} , 1 complex scalar t^{i}
- Scalars t^i parametrize special Kähler manifold \mathcal{M}_v , characterized by a holomorphic prepotential $\mathcal{F}(t)$
- Hyper mult.: 2 fermions ζ_{α} , 4 real scalars q^{u}
- Scalars q^u parametrize *quaternionic-Kähler* manifold \mathcal{M}_h , characterized by their SU(2) curvature two-forms $K^x = d\omega^x + \frac{1}{2}\epsilon^{xyz}\omega^y \wedge \omega^z$
- **Gauging** of isometries k_{λ} :

$$\partial_{\mu}q^{\mu} \rightarrow D_{\mu}q^{\mu} = \partial_{\mu}q^{\mu} - A_{\mu}{}^{I}\Theta_{I}{}^{\lambda}k_{\lambda}^{\mu} + B_{\mu I}\Theta^{I}{}^{\lambda}k_{\lambda}^{\mu}$$

Charges: Θ_I^{λ} (electric), $\Theta^{I\lambda}$ (magnetic) [de Wit, Samtleben, Trigiante '05] • Killing prepotentials:

$$k_{\lambda}^{u}K_{uv}^{x} = \nabla P_{\lambda}^{x}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Partial super-Higgs mechanism [Ferrara, Nieuwenhuizen '83]

- One gravitino must become massive, forming an $\mathcal{N}=1$ massive gravitino multiplet
- Thus, need at least one additional vector multiplet
- Super-Higgs must break *SU*(2) R-symmetry, thus need at least one hypermultiplet

$$\begin{pmatrix} 2, \frac{3}{2}, \frac{3}{2}, 1 \end{pmatrix} + \begin{pmatrix} 1, \frac{1}{2}, \frac{1}{2}, 0, 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0 \end{pmatrix} \\ \downarrow \\ \begin{pmatrix} 2, \frac{3}{2} \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \begin{pmatrix} +\frac{1}{2} \end{pmatrix}, 1 \begin{pmatrix} +0 \end{pmatrix}, 1 \begin{pmatrix} +0 \end{pmatrix}, \frac{1}{2} \end{pmatrix} + 2 \begin{pmatrix} \frac{1}{2}, 0, 0 \end{pmatrix}$$

- Coupling of vectors to scalars via gaugings: need two isometries k₁ and k₂
- Which charges realize spontaneous $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ breaking?

Supersymmetry variation of fermions

Conditions for $\mathcal{N} = 1$ Minkowski vacua $(D_{\mu}\epsilon_{\mathcal{A}} = 0)$ Lorentz-symmetry of vacuum implies: $S_{\mathcal{AB}}\epsilon_{1}^{\mathcal{B}} = W^{i\mathcal{AB}}\epsilon_{1\mathcal{B}} = N_{\alpha}^{\mathcal{A}}\epsilon_{1\mathcal{A}} = 0$ and $S_{\mathcal{AB}}\epsilon_{2}^{\mathcal{B}} \neq 0$

Electric/magnetic-covariant: $V^{\wedge} = (X^{\prime}, \mathcal{F}_{l}); \Theta_{\Lambda}{}^{\lambda} = (\Theta_{l}{}^{\lambda}, -\Theta^{l}{}^{\lambda})$

"Two into one won't go" [Cecotti, Girardello, Porrati '84]

- Locality of the theory ensures that we can find an $Sp(n_v + 1)$ -frame s.t. all charges are electric, i.e. $\Theta^{I \lambda} = 0$.
- Let us use special coordinates s.t. $V^{\Lambda} = (1, t^{i}, \mathcal{F}_{0}(t), \mathcal{F}_{i}(t))$
- Then, $S_{\mathcal{AB}}\epsilon_1^{\mathcal{B}} = W^{i\mathcal{AB}}\epsilon_{1\mathcal{B}} = 0$ are equivalent to

$$\Theta_I^{\lambda} P_{\lambda}^x \sigma_{\mathcal{A}\mathcal{B}}^x \epsilon_1^{\mathcal{B}} = \mathbf{0} \; .$$

- Since $\Theta_l^{\lambda} P_{\lambda}^{x}$ is real, this is just an *su*(2) variation of ϵ_1 .
- Hence, the solution must fulfill $\Theta_l^{\ \lambda} P_{\lambda}^x = 0$, thus there is no $\mathcal{N} = 1$ solution.

End of the story?

A way out

- $\mathcal{N} = 1$ solutions are possible if no special coordinates exist in the purely electric frame. [Ferrara, Girardello, Porrati '95]
- Drawback: No special coordinates means no prepotential, thus the tools of special geometry are not usable.
- Alternative description: By electric/magnetic-duality, one can use a frame *with* special coordinates but with both *electric* and *magnetic* charges.
- Then, $S_{AB}\epsilon_1^B = W^{iAB}\epsilon_{1B} = 0$ correspond to

$$(\Theta_I^{\ \lambda} - \mathcal{F}_{IJ}\Theta^{J\ \lambda})P_{\lambda}^{x}\sigma_{\mathcal{AB}}^{x}\epsilon_1^{\mathcal{B}} = 0$$
.

• These linear equations can be easily solved for Θ_I^{λ} and $\Theta^{J\lambda}$.

Two into one can go!

General solution:

$$\begin{array}{lll} \Theta_{I}^{\ 1} = & - \operatorname{Im} \left(P_{2}(q_{0}) \, \mathcal{F}_{IJ}(t_{0}) \, \mathcal{C}^{J} \right) \,, & \Theta^{I \, 1} = & - \operatorname{Im} \left(P_{2}(q_{0}) \, \mathcal{C}^{I} \right) \,, \\ \Theta_{I}^{\ 2} = & \operatorname{Im} \left(P_{1}(q_{0}) \, \mathcal{F}_{IJ}(t_{0}) \, \mathcal{C}^{J} \right) \,, & \Theta^{I \, 2} = & \operatorname{Im} \left(P_{1}(q_{0}) \, \mathcal{C}^{I} \right) \,, \end{array}$$

with $P_{\lambda} = P_{\lambda}^{x} (\epsilon_{1}^{\mathcal{A}} \sigma_{\mathcal{AB}}^{x} \epsilon_{1}^{\mathcal{B}})$ and C' a complex vector.

• Locality:

$$\overline{C}^{I}(\operatorname{Im} \mathcal{F})_{IJ}(t_{0}) C^{J} = 0$$
.

We find a solution

- where \mathcal{F} does not exist in purely the electric frame,
- that can be constructed for any $\mathcal{M}_v \times \mathcal{M}_h$,
- that can be constructed at *any* point of $\mathcal{M}_v \times \mathcal{M}_h$.

Hyperino variation?

Example: special quaternionic-Kähler manifolds [Ferrara, Sabharwal '90]

- Special quaternionic-Kähler manifolds are fibrations over special Kähler manifolds ("c-map")
- They arise naturally in type II compactifications to $\mathcal{N} = 2$ in 4*d*.
- They admit $2n_{
 m h}+1$ shift isometries $k_{ ilde{\Lambda}},k_{ ilde{\phi}}$ in the fibre obeying

 $[k_{\tilde{\Lambda}}, k_{\tilde{\Sigma}}] = \Omega_{\tilde{\Lambda}\tilde{\Sigma}} k_{\tilde{\phi}} \qquad (\text{Heisenberg algebra})$

with $\Omega_{\tilde{\Lambda}\tilde{\Sigma}}$ being the $Sp(n_h)$ -metric.

• Fibration structure singles out a certain SU(2)-frame in which also $N^{\mathcal{A}}_{\alpha}\epsilon_{1,\mathcal{A}} = 0$ can be realized. [Cassani, Bilal '07]

Special quaternionic-Kähler manifolds and $\mathcal{N} = 1$

Solution:

$$\Theta_{\Lambda}{}^{\tilde{\Sigma}} = \mathsf{Re} \begin{pmatrix} \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, \mathcal{G}_{AB} D^{B} & \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, D^{A} \\ \bar{C}^{I} \, \mathcal{G}_{AB} D^{B} & \bar{C}^{I} \, D^{A} \end{pmatrix}$$

Locality:

Commutativity:

 $ar{C}^I (\operatorname{Im} \mathcal{F})_{IJ} C^J = 0$ $ar{D}^A (\operatorname{Im} \mathcal{G})_{AB} D^B = 0$

Spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ breaking

- $\bullet\,$ can be realized for any $\mathcal{M}_v\times\mathcal{M}_h$
- can be realized at any point thereof.

String realisations

Solution:

$$\Theta_{\Lambda}{}^{\tilde{\Sigma}} = \text{Re} \begin{pmatrix} \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, \mathcal{G}_{AB} D^{B} & \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, D^{A} \\ \bar{C}^{I} \, \mathcal{G}_{AB} D^{B} & \bar{C}^{I} \, D^{A} \end{pmatrix}$$

- Moduli space of hypermultiplet scalars in *SU*(3) × *SU*(3) structure compactifications of type II string is special quaternionic-Kähler.
- The stringy realisation of the solution for the charges always includes *"non-geometric fluxes"* and by this evades the Gibbons-Maldacena-Nuñez no-go theorem.
- The solution is completely mirror-symmetric.

String realisations

Solution:

$$\Theta_{\Lambda}{}^{\tilde{\Sigma}} = \text{Re} \begin{pmatrix} \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, \mathcal{G}_{AB} D^{B} & \bar{\mathcal{F}}_{IJ} \bar{C}^{J} \, D^{A} \\ \bar{C}^{I} \, \mathcal{G}_{AB} D^{B} & \bar{C}^{I} \, D^{A} \end{pmatrix}$$

- Worldsheet instantons do not change these results because they just correct the holomorphic prepotentials *F* and *G* which are kept arbitrary in our analysis.
- Spacetime instantons break all *but* the gauged isometries.

[Kashani-Poor, Tomasiello '05]

• Flux quantization might put serious constraints on the existence of $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ breaking in string theory.

$\mathcal{N} = 1$ AdS vacua

- The same analysis can be done for AdS space, giving a general solution for $\mathcal{N}=1$ vacua.
- In principle, one adds only some inhomogeneity to the equation coming from the gravitino variation.
- However, for the c-map case, the solution differs drastically since usually a different supersymmetry generator remains unbroken.
- In this way, the Minkowski solution forces the cosmological constant to vanish, without any fine-tuning.
- In contrast to the Minkowski case, one can realize
 N = 2 → N = 1 breaking without the need of non-geometric fluxes (as already known in the literature)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

The N=1 *low-energy effective theory*

- By integrating out the massive gravitino multiplet one should obtain the $\mathcal{N}=1$ effective action.
- Integrating out the massive gravitino multiplet corresponds to performing the quotient $M_q = M_h / \langle k_1, k_2 \rangle$
- It turns out that \mathcal{M}_q is Kähler with Kähler two-form $K = d\omega^x \epsilon_1^A \sigma_{\mathcal{AB}}^x \epsilon_2^B$
- The Killing prepotentials give the holomorphic superpotential

$$W = e^{-K/2} X^{I} (\Theta_{I}^{\lambda} - \mathcal{F}_{IJ} \Theta^{J\lambda}) P^{x}_{\lambda} \epsilon^{\mathcal{A}}_{1} \sigma^{x}_{\mathcal{AB}} \epsilon^{\mathcal{B}}_{1}$$

and the D-terms

$$D_{i} = (\nabla_{i} X^{I})(\Theta_{I}^{\ \lambda} - \mathcal{F}_{IJ} \Theta^{J \ \lambda}) P_{\lambda}^{x} \epsilon_{1}^{\mathcal{A}} \sigma_{\mathcal{A}\mathcal{B}}^{x} \epsilon_{2}^{\mathcal{B}}$$

• Integrating out the massive graviphoton leads to a holomorphic gauge kinetic function.

Hagen Triendl (Universität Hamburg)

Conclusions

- Spontaneous partial $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ supersymmetry breaking in Minkowski space is possible for any $\mathcal{N} = 2$ moduli space $\mathcal{M}_v \times \mathcal{M}_h$ as long as two appropriate Killing vectors exist on \mathcal{M}_h .
- Such Killing vectors exist for any special quaternionic manifold.
- In string realizations, flux quantization might put constraints on $\mathcal{M}_v \times \mathcal{M}_h$ to allow for $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ breaking.
- Similar story for $\mathcal{N}=1$ AdS vacua, but the solution for charges is very different.
- The $\mathcal{N}=2$ quantities descend to the usual $\mathcal{N}=1$ quantities in the effective action.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Two into one can go!

Hagen Triendl (Universität Hamburg)

Spontaneous Partial SUSY Breaking

Hannover, 23.02.2010 18 / 18

- 3

< ロ > < 同 > < 回 > < 回 >