Spin(7)-instantons & other Yang-Mills solutions on cylinders over coset spaces with G_2-structure

Alexander Haupt
University of Hamburg

11th Nordic String Theory Meeting 2017, Hannover
10-Feb-2017

JHEP 1603(2016)038 & WIP
Outline

1. Introduction
 - Motivation
 - Yang-Mills instantons in \(d = 4 \)
 - Instantons in \(d > 4 \) & YM with torsion

2. YM theory & instantons on 8d \(Z(G/H) \)
 - Quick review of 7d \(G_2 \) & 8d Spin(7)-structures
 - Set-up: gauge field ansatz
 - Solutions: old & new

3. Conclusions
1 Introduction
 - Motivation
 - Yang-Mills instantons in $d = 4$
 - Instantons in $d > 4$ & YM with torsion

2 YM theory & instantons on 8d $Z(G/H)$
 - Quick review of 7d G_2- & 8d Spin(7)-structures
 - Set-up: gauge field ansatz
 - Solutions: old & new

3 Conclusions
1 Introduction
 - Motivation
 - Yang-Mills instantons in $d = 4$
 - Instantons in $d > 4$ & YM with torsion

2 YM theory & instantons on 8d $\mathbb{Z}(G/H)$
 - Quick review of 7d G_2- & 8d Spin(7)-structures
 - Set-up: gauge field ansatz
 - Solutions: old & new

3 Conclusions
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, $d = 10$ supergravity coupled to super Yang-Mills theory

- In phenomenological applications, one often considers “string compactifications”: $M^{10} = M^{10-n} \times X_n$

- Of particular interest are solutions that preserve some amount of supersymmetry

- Condition of SUSY preservation leads to appearance of higher-dim. Yang-Mills instantons and G-structure manifolds

Overarching aim(s):

1. **construct new instanton/YM solutions on various G-structure manifolds**

2. **find embeddings into string theory (het. SUGRA)**
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1, d = 10$ supergravity coupled to super Yang-Mills theory.

In phenomenological applications, one often considers "**string compactifications**": $\mathcal{M}^{10} = \mathcal{M}^{10-n} \times X_n$

Of particular interest are solutions that preserve some amount of supersymmetry.

Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and G-structure manifolds**

Overarching aim(s):

1. **Construct new instanton/YM solutions on various G-structure manifolds**
2. **Find embeddings into string theory (het. SUGRA)**
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, $d = 10$ supergravity coupled to super Yang-Mills theory.

In phenomenological applications, one often considers “**string compactifications**”: $\mathcal{M}^{10} = \mathcal{M}^{10-n} \times X_n$.

Of particular interest are solutions that preserve some amount of **supersymmetry**.

Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and G-structure manifolds**.

Overarching aim(s):

1. **Construct new instanton/YM solutions on various G-structure manifolds**
2. **Find embeddings into string theory (het. SUGRA)**
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1, d = 10$ supergravity coupled to super Yang-Mills theory.

In phenomenological applications, one often considers “string compactifications”: $\mathcal{M}^{10} = \mathcal{M}^{10-n} \times X_n$.

Of particular interest are solutions that preserve some amount of **supersymmetry**.

Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and G-structure manifolds**.

Overarching aim(s):

1. construct new instanton/YM solutions on various G-structure manifolds
2. find embeddings into string theory (het. SUGRA)
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, $d = 10$ supergravity coupled to super Yang-Mills theory

In phenomenological applications, one often considers “**string compactifications**”: $\mathcal{M}^{10} = \mathcal{M}^{10-n} \times X_n$

Of particular interest are solutions that preserve some amount of **supersymmetry**

Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and G-structure manifolds**

Overarching aim(s):

1. **construct new instanton/YM solutions on various G-structure manifolds**

2. **find embeddings into string theory (het. SUGRA)**
In the **low-energy limit**, heterotic string theory yields $\mathcal{N} = 1$, $d = 10$ supergravity coupled to super Yang-Mills theory.

In phenomenological applications, one often considers “**string compactifications**”: $\mathcal{M}^{10} = \mathcal{M}^{10-n} \times X_n$

Of particular interest are solutions that preserve some amount of **supersymmetry**.

Condition of SUSY preservation leads to appearance of higher-dim. **YM-instantons and G-structure manifolds**

Overarching aim(s):

1. **Construct new instanton/YM solutions on various G-structure manifolds**
2. **Find embeddings into string theory (het. SUGRA)**
Definition

A Yang-Mills instanton is a gauge connection\(^\ast\) on Euclidean \(\mathcal{M}^4\), whose curvature \(F\) is self-dual, i.e. \(\ast F = F\).

\(^\ast\)connection \(A\nabla\) on a principal \(K\)-bundle over \(\mathcal{M}^4\) (gauge group \(K\))

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), ...]

Properties

- Solutions of YM-eq. \((0 \overset{\text{BI}}{=} DF = D \ast F \implies D \ast F = 0)\)
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for \(\mathcal{M} = \mathbb{R}^4, K = SU(2)\)

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about **structure of YM-vacuum** (crit. pts. of YM-action; appear in path int. as leading qu. corr.)
Definition

A Yang-Mills instanton is a gauge connection\(^{(*)}\) on Euclidean \(M^4\), whose curvature \(F\) is self-dual, i.e. \(*F = F\).

\(^{(*)}\)connection \(A\nabla\) on a principal \(K\)-bundle over \(M^4\) (gauge group \(K\))

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

- Solutions of YM-eq. \((0 \overset{\text{Bl}}{=} DF = D*F \implies D*F = 0)\)
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for \(M = \mathbb{R}^4, K = SU(2)\)

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)
Definition

A Yang-Mills instanton is a gauge connection*) on Euclidean \mathcal{M}^4, whose curvature F is self-dual, i.e. $\star F = F$.

*)connection $^A \nabla$ on a principal K-bundle over \mathcal{M}^4 (gauge group K)

[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), ...]

Properties

- Solutions of YM-eq. $(0 \overset{\text{BI}}{=} DF = D \star F \implies D \star F = 0)$
- 1st order eq. easier to solve than 2nd order YM-eq.
- 1st ex: **BPST instanton** (1975) for $\mathcal{M} = \mathbb{R}^4$, $K = SU(2)$

Widespread applications in maths & physics

- classification of 4-manifolds (e.g. Donaldson invariants)
- learn about structure of YM-vacuum (crit. pts. of YM-action; appear in path int. as leading qu. corr.)
Definition

In higher dimensions, the instanton equation is generalized to

\[\ast F = -F \wedge \ast Q_M , \]

with some globally well-defined 4-form \(Q_M \).

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on \(M \) to have \(Q_M \leftrightarrow G \)-structure manifolds (i.e. struct. grp. \(G \subset SO(d) \), e.g. \(SU(3) \) in \(d = 6 \))
- Instanton eq. \(\implies \) YM with torsion \(D \ast F + F \wedge \ast H = 0 \). Torsion 3-form \(\ast H := d \ast Q_M \) (ordinary YM if \(Q_M \) co-closed).

\(H \) appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. appl.: 3 defs. equivalent)

- \(F \cdot \epsilon = 0 \) (BPS eq. in string theory)
- \(F \in g \) (i.e. \(F \in \Gamma(gM \otimes \text{End}(E)) \), often in math. lit)
Definition

In higher dimensions, the **instanton equation** is generalized to

\[\ast F = - F \wedge \ast Q_M, \]

with some globally well-defined 4-form \(Q_M \).

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on \(M \) to have \(Q_M \leftrightarrow G\)-structure manifolds (i.e. struct. grp. \(G \subset SO(d) \), e.g. \(SU(3) \) in \(d = 6 \))
- Instanton eq. \(\implies \) **YM with torsion** \(D \ast F + F \wedge \ast H = 0 \).

 Torsion 3-form \(\ast H := d \ast Q_M \) (ordinary YM if \(Q_M \) co-closed).

 \(H \) appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- \(F \cdot \epsilon = 0 \) (BPS eq. in string theory)
- \(F \in g \) (i.e. \(F \in \Gamma(\mathfrak{g} M \otimes \text{End}(E)) \), often in math. lit)
Definition

In higher dimensions, the **instanton equation** is generalized to

\[*F = -F \wedge *Q_M , \]

with some globally well-defined 4-form \(Q_M \).

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), ...]

Properties

- Need additional structure on \(M \) to have \(Q_M \leftrightarrow G\text{-structure manifolds} \) (i.e. struct. grp. \(G \subset SO(d) \), e.g. \(SU(3) \) in \(d = 6 \))
- Instanton eq. \(\implies \text{YM with torsion} \quad D * F + F \wedge *H = 0. \)

 Torsion 3-form \(*H := d * Q_M \) (ordinary YM if \(Q_M \) co-closed).

 \(H \) appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

- \(F \cdot \epsilon = 0 \) (BPS eq. in string theory)
- \(F \in g \) (i.e. \(F \in \Gamma(gM \otimes \text{End}(E)) \), often in math. lit)
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” \(\mathbb{Z}(G/H) := \mathbb{R} \times G/H \).

- \(G/H \) is a 7d compact coset space w/ \(G_2 \)- or \(SU(3) \)-structure
- Cylinder metric: \(g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b \) (\(a, b = 1, \ldots, 7 \))
- \(\{e^\mu\} = \{e^0 = d\tau, e^a\} \) is a local ONB of \(T^*(\mathbb{R} \times G/H) \)
- Why coset spaces? → simple non-triv. examples of \(G \)-structure manifolds (e.g. manageable)
- Why cylinders? → reduce to ODEs (gradient flow eqs.) in \(\tau \)
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications
 (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons
 [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” $Z(G/H) := \mathbb{R} \times G/H$.

- G/H is a 7d compact coset space w/ G_2- or $SU(3)$-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b$ ($a, b = 1, \ldots, 7$)
- $\{e^\mu\} = \{e^0 = d\tau, e^a\}$ is a local ONB of $T^*(\mathbb{R} \times G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? → reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - **Fill a gap** in literature on higher-dim YM instantons
 [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” \(Z(G/H) := \mathbb{R} \times G/H \).

- \(G/H \) is a 7d compact coset space w/ \(G_2 \)- or \(SU(3) \)-structure
- Cylinder metric: \(g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b \) \((a, b = 1, \ldots, 7) \)
- \(\{ e^\mu \} = \{ e^0 = d\tau, e^a \} \) is a local ONB of \(T^*(\mathbb{R} \times G/H) \)
- Why coset spaces? → simple non-triv. examples of \(G \)-structure manifolds (eqs. manageable)
- Why cylinders? → reduce to ODEs (gradient flow eqs.) in \(\tau \)
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications
 (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons
 [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” \(Z(G/H) := \mathbb{R} \times G/H \).

- \(G/H \) is a 7d compact coset space w/ \(G_2 \)- or \(SU(3) \)-structure
- Cylinder metric: \(g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b \) \((a, b = 1, \ldots, 7)\)
- \(\{e^\mu\} = \{e^0 = d\tau, e^a\} \) is a local ONB of \(T^*(\mathbb{R} \times G/H) \)
- Why coset spaces? → simple non-triv. examples of \(G \)-structure manifolds (eqs. manageable)
- Why cylinders? → reduce to ODEs (gradient flow eqs.) in \(\tau \)
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” $Z(G/H) := \mathbb{R} \times G/H$.

- G/H is a 7d compact coset space w/ G_2- or $SU(3)$-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b$ ($a, b = 1, \ldots, 7$)
- $\{e^\mu\} = \{e^0 = d\tau, e^a\}$ is a local ONB of $T^*(\mathbb{R} \times G/H)$
- Why coset spaces? → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- Why cylinders? → reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons
 [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on "cylinder" $Z(G/H) := \mathbb{R} \times G/H$.

- G/H is a 7d compact coset space w/ G_2- or $SU(3)$-structure
- Cylinder metric: $g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b \ (a, b = 1, \ldots, 7)$
- $\{e^\mu\} = \{e^0 = d\tau, e^a\}$ is a local ONB of $T^*(\mathbb{R} \times G/H)$
- **Why coset spaces?** → simple non-triv. examples of G-structure manifolds (eqs. manageable)
- **Why cylinders?** → reduce to ODEs (gradient flow eqs.) in τ
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - **Fill a gap** in literature on higher-dim YM instantons [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on “cylinder” \(Z(G/H) := \mathbb{R} \times G/H \).

- \(G/H \) is a 7d compact coset space w/ \(G_2 \)- or \(SU(3) \)-structure
- Cylinder metric: \(g = d\tau \otimes d\tau + \delta_{ab} e^a \otimes e^b \) \((a, b = 1, \ldots, 7) \)
- \(\{e^\mu\} = \{e^0 = d\tau, e^a\} \) is a local ONB of \(T^*(\mathbb{R} \times G/H) \)
- Why coset spaces? \(\rightarrow \) simple non-triv. examples of \(G \)-structure manifolds (eqs. manageable)
- Why cylinders? \(\rightarrow \) reduce to ODEs (gradient flow eqs.) in \(\tau \)
- Further motivation
 - Soln in gauge sector of heterotic flux compactifications
 (as e.g. in [AH, Lechtenfeld, Musaev (2014)])
 - Fill a gap in literature on higher-dim YM instantons
 [Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe, Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]
7d G_2-structures:

- G_2-str. def. by **3-form** P (Hodge dual **4-form** $Q := \ast_7 P$)
- G_2-structures distinguished/classified by **4 torsion classes**:

$$dP = \tau_0 Q + 3 \tau_1 \wedge P + \ast_7 \tau_3 , \quad dQ = 4 \tau_1 \wedge Q + \tau_2 \wedge P$$

- Important examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>TCs</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>\emptyset</td>
<td>$dP = 0, dQ = 0$</td>
</tr>
<tr>
<td>nearly parallel</td>
<td>τ_0</td>
<td>$dP = \tau_0 Q, dQ = 0$</td>
</tr>
<tr>
<td>cocalibrated/semi-p.</td>
<td>$\tau_0 \oplus \tau_3$</td>
<td>$dP = \tau_0 Q + \ast_7 \tau_3, dQ = 0$</td>
</tr>
</tbody>
</table>

8d Spin(7)-structures:

- $Z(G/H)$ inherits Spin(7)-str. def. by **self-dual 4-form** Ψ

$$\Psi = P \wedge d\tau - Q$$

- Spin(7)-structures distinguished by **2 torsion classes**

- **Dictionary**: 7d G_2-structures \leftrightarrow Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. Spin(7)-str. on cyl.
7d G_2-structures:
- G_2-str. def. by **3-form** P (Hodge dual **4-form** $Q := \ast_7 P$)
- G_2-structures distinguished/classified by **4 torsion classes**:
 \[dP = \tau_0 Q + 3 \tau_1 \wedge P + \ast_7 \tau_3, \quad dQ = 4 \tau_1 \wedge Q + \tau_2 \wedge P \]
- **Important examples**:

<table>
<thead>
<tr>
<th>Type</th>
<th>TCs</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>\emptyset</td>
<td>$dP = 0, dQ = 0$</td>
</tr>
<tr>
<td>nearly parallel</td>
<td>τ_0</td>
<td>$dP = \tau_0 Q, dQ = 0$</td>
</tr>
<tr>
<td>cocalibrated/semi-p.</td>
<td>$\tau_0 \oplus \tau_3$</td>
<td>$dP = \tau_0 Q + \ast_7 \tau_3, dQ = 0$</td>
</tr>
</tbody>
</table>

8d Spin(7)-structures:
- $Z(G/H)$ inherits Spin(7)-str. def. by **self-dual 4-form** Ψ
 \[\Psi = P \wedge d\tau - Q \]
- Spin(7)-structures distinguished by **2 torsion classes**
- **Dictionary**: 7d G_2-structures \leftrightarrow Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. Spin(7)-str. on cyl.
7d G_2-structures:

- G_2-str. def. by **3-form** P (Hodge dual **4-form** $Q := \ast_7 P$)
- G_2-structures distinguished/classified by **4 torsion classes**:
 \[dP = \tau_0 Q + 3\tau_1 \wedge P + \ast_7 \tau_3, \quad dQ = 4\tau_1 \wedge Q + \tau_2 \wedge P \]
- Important examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>TCs</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>\emptyset</td>
<td>$dP = 0, dQ = 0$</td>
</tr>
<tr>
<td>nearly parallel</td>
<td>τ_0</td>
<td>$dP = \tau_0 Q, dQ = 0$</td>
</tr>
<tr>
<td>cocalibrated/semi-p.</td>
<td>$\tau_0 \oplus \tau_3$</td>
<td>$dP = \tau_0 Q + \ast_7 \tau_3, dQ = 0$</td>
</tr>
</tbody>
</table>

8d Spin(7)-structures:

- $Z(\mathbb{G}/H)$ inherits Spin(7)-str. def. by self-dual **4-form** Ψ
 \[\Psi = P \wedge d\tau - Q \]
- Spin(7)-structures distinguished by **2 torsion classes**
- **Dictionary**: 7d G_2-structures \leftrightarrow Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. Spin(7)-str. on cyl.
7d G_2-structures:

- G_2-str. def. by **3-form P** (Hodge dual **4-form $Q := *_7 P$**)
- G_2-structures distinguished/classified by **4 torsion classes**:
 \[
 dP = \tau_0 \, Q + 3 \, \tau_1 \wedge P + *_7 \tau_3 , \quad dQ = 4 \, \tau_1 \wedge Q + \tau_2 \wedge P
 \]
- Important examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>TCs</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>\emptyset</td>
<td>$dP = 0$, $dQ = 0$</td>
</tr>
<tr>
<td>nearly parallel</td>
<td>τ_0</td>
<td>$dP = \tau_0 , Q$, $dQ = 0$</td>
</tr>
<tr>
<td>cocalibrated/semi-p.</td>
<td>$\tau_0 \oplus \tau_3$</td>
<td>$dP = \tau_0 , Q + *_7 \tau_3$, $dQ = 0$</td>
</tr>
</tbody>
</table>

8d $\text{Spin}(7)$-structures:

- $Z(G/H)$ inherits $\text{Spin}(7)$-str. def. by **self-dual 4-form Ψ**
 \[\Psi = P \wedge d\tau - Q\]
- $\text{Spin}(7)$-structures distinguished by **2 torsion classes**
- **Dictionary**: 7d G_2-structures \leftrightarrow $\text{Spin}(7)$-structures on cyl. e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. $\text{Spin}(7)$-str. on cyl.
7d G_2-structures:
- G_2-str. def. by 3-form P (Hodge dual 4-form $Q := \ast_7 P$)
- G_2-structures distinguished/classified by 4 torsion classes:
 \[
 dP = \tau_0 Q + 3 \tau_1 \wedge P + \ast_7 \tau_3 , \quad dQ = 4 \tau_1 \wedge Q + \tau_2 \wedge P
 \]
- Important examples:
 \[
 \begin{array}{|c|c|l|}
 \hline
 \text{Type} & \text{TCs} & \text{Properties} \\
 \hline
 \text{parallel} & \emptyset & dP = 0, \ dQ = 0 \\
 \text{nearly parallel} & \tau_0 & dP = \tau_0 Q, \ dQ = 0 \\
 \text{cocalibrated/semi-p.} & \tau_0 \oplus \tau_3 & dP = \tau_0 Q + \ast_7 \tau_3 , \ dQ = 0 \\
 \hline
 \end{array}
 \]

8d Spin(7)-structures:
- $Z(G/H)$ inherits Spin(7)-str. def. by self-dual 4-form Ψ
 \[
 \Psi = P \wedge d\tau - Q
 \]
- Spin(7)-structures distinguished by 2 torsion classes
- Dictionary: 7d G_2-structures \leftrightarrow Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. Spin(7)-str. on cyl.
7d G_2-structures:

- G_2-str. def. by 3-form P (Hodge dual 4-form $Q := \ast_7 P$)
- G_2-structures distinguished/classified by 4 torsion classes:

$$dP = \tau_0 \ Q + 3 \tau_1 \wedge P + \ast_7 \tau_3 \ , \quad dQ = 4 \tau_1 \wedge Q + \tau_2 \wedge P$$

- Important examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>TCs</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>\emptyset</td>
<td>$dP = 0, dQ = 0$</td>
</tr>
<tr>
<td>nearly parallel</td>
<td>τ_0</td>
<td>$dP = \tau_0 \ Q, dQ = 0$</td>
</tr>
<tr>
<td>cocalibrated/semi-p.</td>
<td>$\tau_0 \oplus \tau_3$</td>
<td>$dP = \tau_0 \ Q + \ast_7 \tau_3, dQ = 0$</td>
</tr>
</tbody>
</table>

8d Spin(7)-structures:

- $Z(G/H)$ inherits Spin(7)-str. def. by self-dual 4-form Ψ

$$\Psi = P \wedge d\tau - Q$$

- Spin(7)-structures distinguished by 2 torsion classes

- **Dictionary**: 7d G_2-structures \leftrightarrow Spin(7)-structures on cyl.
 e.g. 7d loc. conf. G_2-str. \rightarrow 8d loc. conf. Spin(7)-str. on cyl.
Back to YM theory on $Z(G/H)$

“Natural” G-invariant ansatz on $Z(G/H)$:

$$A = e^i l_i + e^a X_a(\tau)$$

(temporal gauge: no $d\tau$ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ \quad ($\mathfrak{m} \leftrightarrow G/H$)
- Lie algebra generators of \mathfrak{g} split: $\{I_A\} = \{l_i\} \cup \{l_a\}$
- Lie algebra:

$$[l_i, l_j] = f_{ij}^k l_k, \quad [l_i, l_a] = f_{ia}^b l_b, \quad [l_a, l_b] = f_{ab}^i l_i + f_{ab}^c l_c$$

- $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{l_i\}$

G-invariance condition:

$$[l_i, X_a] = f_{ia}^b X_b$$
Back to YM theory on $Z(G/H)$

“Natural” G-invariant ansatz on $Z(G/H)$:
\[
A = e^i l_i + e^a X_a(\tau)
\]
(temporal gauge: no $d\tau$ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:
- Lie algebra decomposes: $g = \mathfrak{h} \oplus \mathfrak{m}$
 ($\mathfrak{m} \leftrightarrow G/H$)
- Lie algebra generators of g split: $\{l_A\} = \{l_i\} \cup \{l_a\}$
- Lie algebra:
 \[
 [l_i, l_j] = f^k_{ij} l_k, \quad [l_i, l_a] = f^b_{ia} l_b, \quad [l_a, l_b] = f_i^{ab} l_i + f_c^{ab} l_c
 \]
- $X_a(\tau) \in g$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{l_i\}$

G-invariance condition:
\[
[l_i, X_a] = f_i^b X_b
\]
Back to YM theory on $Z(G/H)$

“Natural” G-invariant ansatz on $Z(G/H)$:

$$A = e^i l_i + e^a X_a(\tau)$$ (temporal gauge: no $d\tau$ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ ($\mathfrak{m} \leftrightarrow G/H$)
- Lie algebra generators of \mathfrak{g} split: $\{l_A\} = \{l_i\} \cup \{l_a\}$
- Lie algebra:
 $$\begin{align*}
 [l_i, l_j] &= f_{ij}^k l_k, & [l_i, l_a] &= f_{ia}^b l_b, & [l_a, l_b] &= f_{ab}^i l_i + f_{ab}^c l_c
 \end{align*}$$
 $$X_a(\tau) \in \mathfrak{g} \text{ and } \{e^i = e^i_a e^a\} \text{ LI 1-forms on } G/H \text{ dual to } \{l_i\}$$

G-invariance condition:

$$[l_i, X_a] = f_{ia}^b X_b$$
Back to YM theory on $Z(G/H)$

“Natural” G-invariant ansatz on $Z(G/H)$:

$$A = e^i l_i + e^a X_a(\tau)$$

(temporal gauge: no $d\tau$ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); ...]

Notation:

- Lie algebra decomposes: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ (m \leftrightarrow G/H)
- Lie algebra generators of \mathfrak{g} split: $\{l_A\} = \{l_i\} \cup \{l_a\}$
- Lie algebra:

$$[l_i, l_j] = f_{ij}^k l_k, \quad [l_i, l_a] = f_{ia}^b l_b, \quad [l_a, l_b] = f_{ab}^i l_i + f_{ab}^c l_c$$

- $X_a(\tau) \in \mathfrak{g}$ and $\{e^i = e^i_a e^a\}$ LI 1-forms on G/H dual to $\{l_i\}$

G-invariance condition:

$$[l_i, X_a] = f_{ia}^b X_b$$
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure.

Consider Spin(7)-instantons ($Q_{\mathcal{M}} = \Psi = \ast \Psi$):

\[\ast F = -F \wedge \Psi \]

Insert ansatz for A (note $\dot{\cdot} := \frac{d}{d\tau}(\cdot)$):

\[\dot{X}_a + \frac{1}{2} P_{a}^{bc} \left(f_{bc}^i l_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0 \]

Can’t be solved in general (depends on choice of f_{BC}^A)!

Single field reduction $X_a(\tau) = \phi(\tau) l_a$ — common sol. $\forall G/H$

w/ additional assumptions on f_{BC}^A:

\[\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1) \]

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

\[\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right) \]

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider Spin(7)-instantons ($Q_\mathcal{M} = \Psi = \ast \Psi$):

$$\ast F = - F \wedge \Psi$$

Insert ansatz for A (note $\dot{\cdot} := \frac{d}{d\tau}(\cdot)$):

$$\dot{X}_a + \frac{1}{2} P_{a}{}^{bc} \left(f^i_{bc} l_i + f^d_{bc} X_d - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f^A_{BC}!)

Single field reduction $X_a(\tau) = \phi(\tau) l_a$ — common sol. $\forall G/H$

w/ additional assumptions on f^A_{BC}:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1)$$

2 static solutions: $\phi = 0, 1$. Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right)$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider \textbf{Spin(7)-instantons} ($\nabla_{\mathcal{M}} = \Psi = \star \Psi$):

$$\star F = -F \wedge \Psi$$

Insert ansatz for A (note $\ddot{\cdot} := \frac{d}{d\tau} (\cdot)$):

$$\ddot{X}_a + \frac{1}{2} P^{b c}_a \left(f^i_{b c} l_i + f^d_{b c} X_d - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f^A_{BC})!

Single field reduction $X_a(\tau) = \phi(\tau) l_a$ — common sol. $\forall G/H$

w/ additional assumptions on f^A_{BC}:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1)$$

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} (1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right])$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider **Spin(7)-instantons** $(Q_M = \Psi = \star \Psi)$:

$$\star F = - F \wedge \Psi$$

Insert ansatz for A (note $(\cdot) := \frac{d}{d\tau} (\cdot)$):

$$\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{bc}^i I_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f_{BC}^A)!

Single field reduction $X_a(\tau) = \phi(\tau) I_a$ — **common sol.** $\forall G/H$

w/ additional assumptions on f_{BC}^A:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1)$$

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right)$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider **Spin(7)-instantons** ($Q_\mathcal{M} = \Psi = \ast \Psi$):

$$\ast F = - F \wedge \Psi$$

Insert ansatz for A (note $(\cdot) := \frac{d}{d\tau} (\cdot)$):

$$\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f_{b}^{i} I_{i} + f_{bc}^{d} X_{d} - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f_{BC}^A)!

Single field reduction $X_a(\tau) = \phi(\tau) I_a$ — **common sol.** $\forall G/H$

w/ additional assumptions on f_{BC}^A:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1)$$

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right)$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider **Spin(7)-instantons** ($Q_{\mathcal{M}} = \Psi = \ast \Psi$):

$$\ast F = - F \wedge \Psi$$

Insert ansatz for A (note $(\cdot) := \frac{d}{d\tau} (\cdot)$):

$$\dot{X}_a + \frac{1}{2} P_a^{\ bc} \left(f_b^i l_i + f_{bc}^d X_d - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f_{BC}^A!)

Single field reduction $X_a(\tau) = \phi(\tau) l_a$ — **common sol.** $\forall G/H$

w/ additional assumptions on f_{BC}^A:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi(\phi - 1)$$

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right)$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Specialize to $\mathcal{M} = Z(G/H)$ and 7d G/H having G_2-structure

Consider **Spin(7)-instantons** ($Q_{\mathcal{M}} = \Psi = \ast \Psi$):

$$\ast F = -F \wedge \Psi$$

Insert ansatz for A (note $(\dot{\cdot}) := \frac{d}{d\tau}(\cdot))$:

$$\dot{X}_a + \frac{1}{2} P_a^{bc} \left(f^i_{bc} I_i + f^d_{bc} X_d - [X_b, X_c] \right) = 0$$

Can’t be solved in general (depends on choice of f_{BC}^A)!

Single field reduction $X_a(\tau) = \phi(\tau) I_a$ — **common sol.** $\forall G/H$

w/ additional assumptions on f_{BC}^A:

$$\dot{\phi} = \frac{\alpha \sigma}{2} \phi (\phi - 1)$$

2 static solutions: $\phi = 0, 1$.

Interpolating tanh-kink:

$$\phi(\tau) = \frac{1}{2} \left(1 - \tanh \left[\frac{\alpha \sigma}{4} (\tau - \tau_0) \right] \right)$$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Other (known) universal YM-solutions:

- Now, consider **YM-eq. w/ torsion** \(D \ast F + F \wedge \ast H = 0 \)
- Insert ansatz for \(A \):
 \[
 \sum_a [X_a, \dot{X}_a] = 0
 \]
 Gauss-law constraint

\[
\ddot{X}_a = \left(\frac{1}{2}(f_{acd} - H_{acd})f_{bcd} - f_{aci}f_{bcj} \right) X_b
- \frac{1}{2}(3f_{abc} - H_{abc})[X_b, X_c] - [X_b, [X_b, X_a]] - \frac{1}{2}H_{abc}f_{ibc}l_i
\]

- Single field reduction + other assumptions (\(H \propto \kappa P, \ldots \)):
 \[
 \ddot{\phi} = \frac{1}{2}(1 + \alpha)\phi(\phi - 1) \left(\phi - \frac{(\kappa + 2)\alpha - 1}{\alpha + 1} \right)
 \]
 - Newtonian mech. of pt. particle w/ quartic potential
 - \(\alpha = 0 \quad \Rightarrow \quad \phi^4 \text{ kink/anti-kink} \quad \phi = \pm \tanh \frac{\tau - \tau_0}{2} \)
 - \((\alpha, \kappa) = (3/5, 1) \quad \Rightarrow \quad \text{Spin}(7)\text{-instantons} \)

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Other (known) universal YM-solutions:

- Now, consider **YM-eq. w/ torsion** $D \ast F + F \wedge \ast H = 0$
- Insert ansatz for A:
 \[
 \sum_a [X_a, \dot{X}_a] = 0 \quad \text{Gauss-law constraint}
 \]
 \[
 \ddot{X}_a = \left(\frac{1}{2} (f_{acd} - H_{acd}) f_{bcd} - f_{aci} f_{bci} \right) X_b
 - \frac{1}{2} (3f_{abc} - H_{abc}) [X_b, X_c] - [X_b, [X_b, X_a]] - \frac{1}{2} H_{abc} f_{ibc} I_i
 \]
- Single field reduction + other assumptions ($H \propto \kappa P$, ...):
 \[
 \ddot{\phi} = \frac{1}{2} (1 + \alpha) \phi (\phi - 1) \left(\phi - \frac{(\kappa + 2)\alpha - 1}{\alpha + 1} \right)
 \]
 - Newtonian mech. of pt. particle w/ quartic potential
 - $\alpha = 0 \quad \rightarrow \quad \phi^4 \text{ kink/anti-kink} \quad \phi = \pm \tanh \frac{\tau - \tau_0}{2}$
 - $(\alpha, \kappa) = (3/5, 1) \rightarrow \text{Spin(7)-instantons}$

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Other (known) universal YM-solutions:

- Now, consider **YM-eq. w/ torsion** \(D^* F + F \wedge *H = 0 \)
- Insert ansatz for \(A \):
 \[
 \sum_a [X_a, \dot{X}_a] = 0 \tag{Gauss-law constraint}
 \]
 \[
 \ddot{X}_a = \left(\frac{1}{2} (f_{acd} - H_{acd}) f_{bcd} - f_{aci} f_{bci} \right) X_b - \frac{1}{2} (3f_{abc} - H_{abc}) [X_b, X_c] - [X_b, [X_b, X_a]] - \frac{1}{2} H_{abc} f_{ibc} l_i
 \]
- Single field reduction + other assumptions \((H \propto \kappa P, \ldots)\):
 \[
 \ddot{\phi} = \frac{1}{2} (1 + \alpha) \phi (\phi - 1) \left(\phi - \frac{(\kappa + 2) \alpha - 1}{\alpha + 1} \right)
 \]
 - Newtonian mech. of pt. particle w/ quartic potential
 - \(\alpha = 0 \rightarrow \phi^4 \) **kink/anti-kink** \(\phi = \pm \tanh \frac{\tau - \tau_0}{2} \)
 - \((\alpha, \kappa) = (3/5, 1) \rightarrow \text{Spin}(7)-instantons**

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
Case-by-case analysis:
Consider **multi-field** configurations . . .

- . . . on cylinders over **three** 7d cosets with nearly parallel G_2-structure
 - Berger space $SO(5)/SO(3)_{\text{max}}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])

- . . . and on cylinders over **four** 7d cosets with $SU(3)$-structure ($SU(3) \subset G_2$, special case of G_2-struct.)
 - $(SO(5)/SO(3)_{A+B})$
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1))/(SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$

- Present some of the **new solutions** in the following
Case-by-case analysis:
Consider **multi-field** configurations . . .

- . . . on cylinders over **three** 7d cosets with nearly parallel G_2-structure
 - Berger space $SO(5)/SO(3)_{\text{max}}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])

- . . . and on cylinders over **four** 7d cosets with $SU(3)$-structure ($SU(3) \subset G_2$, special case of G_2-struct.)
 - $(SO(5)/SO(3)_{A+B})$
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1))/(SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$

- Present some of the new solutions in the following
Case-by-case analysis:
Consider **multi-field** configurations . . .

- . . . on cylinders over **three** 7d cosets with nearly parallel G_2-structure
 - Berger space $SO(5)/SO(3)_{\text{max}}$
 - Squashed 7-sphere $Sp(2) \times Sp(1)/Sp(1)^2$
 - (Aloff-Wallach spaces $SU(3)/U(1)_{k,l}$, cf. also [AH, Ivanova, Lechtenfeld, Popov (2011); Geipel (2016)])

- . . . and on cylinders over **four** 7d cosets with $SU(3)$-structure ($SU(3) \subset G_2$, special case of G_2-struct.)
 - $(SO(5)/SO(3)_{A+B})$
 - $(N^{pqr} = (SU(3) \times U(1))/(U(1) \times U(1)))$
 - $M^{pqr} = (SU(3) \times SU(2) \times U(1))/(SU(2) \times U(1) \times U(1))$
 - $Q^{pqr} = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1))$

- Present some of the **new solutions** in the following
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve G-inv. cond. $[l_i, X_a] = f_{ia}^b X_b$

- Berger space: G-inv. cond. $\Rightarrow X_a = \phi l_a$
 (back to single field case: nothing new)

- Squashed S^7: G-inv. cond. \Rightarrow 2 real fields ϕ_1, ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \Rightarrow 2 branches:
 - “instanton branch” ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{\kappa c} \tanh \left[\frac{\sqrt{\kappa c}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol: solve G-inv. cond. $[I_i, X_a] = f_{ia}^b X_b$
- **Berger space**: G-inv. cond. $\implies X_a = \phi l_a$
 (back to single field case: **nothing new**)
- **Squashed S^7**: G-inv. cond. \implies 2 real fields ϕ_1, ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 - "instanton branch" ($\phi_1 = \pm \phi_2 \equiv \pm \phi$
 \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 - $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c\kappa} \tanh \left[\frac{\sqrt{c\kappa}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve *G-inv. cond.* $[l_i, X_a] = f_{ia}^b X_b$

- **Berger space**: *G-inv. cond.* $\Rightarrow X_a = \phi l_a$
 (back to single field case: **nothing new**)

- **Squashed S^7**: *G-inv. cond.* \Rightarrow 2 real fields ϕ_1, ϕ_2

 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \mp \phi$ (again, **back to old case**)

 - YM-eq. \Rightarrow 2 branches:

 1. “instanton branch” ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)

 2. $\phi_2 = (\kappa + 3)/2, \phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau - \tau_0) \right]$

 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve G-inv. cond. $[l_i, X_a] = f^b_{ia} X_b$

- **Berger space**: G-inv. cond. $\implies X_a = \phi l_a$
 (back to single field case: **nothing new**)

- **Squashed S^7**: G-inv. cond. $\implies 2$ real fields ϕ_1, ϕ_2

 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, **back to old case**)

 - YM-eq. $\implies 2$ branches:

 1. “instanton branch” ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \to single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)

 2. $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve G-inv. cond. $[l_i, X_a] = f^b_{ia} X_b$
- **Berger space**: G-inv. cond. $\implies X_a = \phi l_a$
 (back to single field case: **nothing new**)
- **Squashed S^7**: G-inv. cond. \implies 2 real fields ϕ_1, ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:
 1. "instanton branch" ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)
 2. $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve G-inv. cond. $[l_i, X_a] = f_{ia}^b X_b$

- **Berger space**: G-inv. cond. $\implies X_a = \phi l_a$
 (back to single field case: **nothing new**)

- **Squashed S^7**: G-inv. cond. \implies 2 real fields ϕ_1, ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, back to old case)
 - YM-eq. \implies 2 branches:

 1. "**instanton branch**" ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \rightarrow single-field case (Spin(7)-instantons + ϕ^4 (anti-)kink)

 2. $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Berger space & squashed S^7:

- 1st step to determine multi-field sol:
 solve G-inv. cond. $[l_i, X_a] = f_{ia}^b X_b$

- **Berger space**: G-inv. cond. $\implies X_a = \phi l_a$
 (back to single field case: **nothing new**)

- **Squashed S^7**: G-inv. cond. $\implies 2$ real fields ϕ_1, ϕ_2
 - Instanton eq.: $\phi_1 = \pm \phi_2 \equiv \pm \phi$ (again, **back to old case**)
 - YM-eq. $\implies 2$ branches:
 1. **“instanton branch”** ($\phi_1 = \pm \phi_2 \equiv \pm \phi$)
 \rightarrow single-field case (Spin(7)-instantons $+$ ϕ^4 (anti-)kink)
 2. $\phi_2 = (\kappa + 3)/2$, $\phi_1(\tau) = \pm \sqrt{c_\kappa} \tanh \left[\frac{\sqrt{c_\kappa}}{2} (\tau - \tau_0) \right]$
 flat direction + single rescaled ϕ^4 (anti-)kink
Non-trivial multi-field solution I ([AH (2016)]):

1st example: \(Z(M^{pqr}) \), \(M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)} \)

- **SU(3)-structure only** for \(p = \pm q, r = 0 \). W.l.o.g. take \(M^{110} \)
- **G-inv. cond.** \(\implies \) 5 real fields \(\phi_1, ..., \phi_5 \)
- Gauss-law constraint \(\implies \phi_4 \sim \phi_1, \phi_5 \sim \phi_2 \)
- Analytical sector \(\phi_3 = 1/(2\sqrt{2}) \) (+ fixing of other parameters).

Remaining 2d motion:
Non-trivial multi-field solution I ([AH (2016)]):

- **1st example:** $Z(M^{pq})$, $M^{pq} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - $SU(3)$-structure only for $p = \pm q$, $r = 0$. W.l.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields ϕ_1, \ldots, ϕ_5
 - Gauss-law constraint \implies $\phi_4 \sim \phi_1$, $\phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters).

 Remaining 2d motion:
Non-trivial multi-field solution I ([AH (2016)]):

- **1st example:** \(Z(M^{pqr}) \), \(M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)} \)
 - \(SU(3) \)-structure **only** for \(p = \pm q, r = 0 \). W.l.o.g. take \(M^{110} \)
 - \(G \)-inv. cond. \(\implies \) 5 real fields \(\phi_1, ..., \phi_5 \)
 - Gauss-law constraint \(\implies \phi_4 \sim \phi_1, \phi_5 \sim \phi_2 \)
 - Analytical sector \(\phi_3 = 1/(2\sqrt{2}) \) (+ fixing of other parameters).

Remaining 2d motion:
Non-trivial multi-field solution I ([AH (2016)]):

1st example: \(Z(M^{pqr} \), \(M^{pqr} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)} \)

- \(SU(3) \)-structure only for \(p = \pm q \), \(r = 0 \). W.l.o.g. take \(M^{110} \)
- \(G \)-inv. cond. \(\implies 5 \) real fields \(\phi_1, ..., \phi_5 \)
- Gauss-law constraint \(\implies \phi_4 \sim \phi_1, \phi_5 \sim \phi_2 \)
- Analytical sector \(\phi_3 = 1/(2\sqrt{2}) \) (+ fixing of other parameters).

Remaining 2d motion:
Non-trivial multi-field solution I ([AH (2016)]):

- **1st example**: $Z(M^{pq r})$, $M^{pq r} = \frac{SU(3) \times SU(2) \times U(1)}{SU(2) \times U(1) \times U(1)}$
 - $SU(3)$-structure **only** for $p = \pm q$, $r = 0$. W.l.o.g. take M^{110}
 - G-inv. cond. \implies 5 real fields ϕ_1, ..., ϕ_5
 - Gauss-law constraint \implies $\phi_4 \sim \phi_1$, $\phi_5 \sim \phi_2$
 - Analytical sector $\phi_3 = 1/(2\sqrt{2})$ (+ fixing of other parameters).

Remaining 2d motion:

Analytical multi-field solutions (of YM w/ torsion)
- **Blue**: finite-energy (physical) YM-configs. **Green**: $E \to \infty$.
Non-trivial multi-field solution II ([AH (2016))):

- **2nd example**: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

 - $SU(3)$-structure **only** for $p = \pm q, q = \pm r$. W.l.o.g. take Q^{111}
 - G-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$
 - Gauss-law constraint $\implies \phi_5 \sim \phi_1, \phi_6 \sim \phi_2, \phi_7 \sim \phi_3$
 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
 - Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.
 \[
 \mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_7^\pm)^2 \right)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}
 \]

 - 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks
 \[
 \phi = c_7^\pm \begin{pmatrix}
 \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,1}) \right] \\
 \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,2}) \right] \\
 \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,3}) \right]
 \end{pmatrix}
 \]

 - Interpolates between $(\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)$ as $\tau \to \pm \infty$
 - Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example**: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

- $SU(3)$-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}

- G-inv. cond. \implies 7 real fields ϕ_1, \ldots, ϕ_7

- Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$

- and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

- Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

$$L = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \phi_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_7^\pm)^2 \right)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

$$\phi = c_7^\pm \begin{pmatrix} \pm \tanh \left(\frac{c_7^\pm}{2} (\tau - \tau_{0,1}) \right) \\ \pm \tanh \left(\frac{c_7^\pm}{2} (\tau - \tau_{0,2}) \right) \\ \pm \tanh \left(\frac{c_7^\pm}{2} (\tau - \tau_{0,3}) \right) \end{pmatrix}$$

- Interpolates between $(\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)$ as $\tau \to \pm \infty$

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example**: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

- $SU(3)$-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}

- G-inv. cond. \implies 7 real fields ϕ_1, \ldots, ϕ_7

- Gauss-law constraint $\implies \phi_5 \sim \phi_1, \phi_6 \sim \phi_2, \phi_7 \sim \phi_3$

- and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

- Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

 $$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_{7}^{\pm})^2 \right)^2 \right\}, \quad c_{7}^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

 $$\phi = c_{7}^{\pm} \begin{pmatrix} \pm \tanh \left[\frac{c_{7}^{\pm}}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_{7}^{\pm}}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_{7}^{\pm}}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

- Interpolates between $(\pm c_{7}^{\pm}, \pm c_{7}^{\pm}, \pm c_{7}^{\pm})$ as $\tau \to \pm \infty$

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example:** $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

 - $SU(3)$-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}

 - G-inv. cond. \implies 7 real fields $\phi_1, ..., \phi_7$

 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$

 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

 - Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

$$L = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_7^\pm)^2 \right)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

$$\phi = c_7^\pm \begin{pmatrix} \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

- Interpolates between $(\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)$ as $\tau \to \pm \infty$

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016))]:

- **2nd example:** $Z(Q^{pq})$, $Q^{pq} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

- **$SU(3)$-structure only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}

- **G-inv. cond.** \implies 7 real fields ϕ_1, \ldots, ϕ_7

- **Gauss-law constraint** \implies $\phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$

- and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

- Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} (\phi_\alpha^2 - (c_7^\pm)^2)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

$$\phi = c_7^\pm \begin{pmatrix} \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

- Interpolates between $(\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)$ as $\tau \to \pm \infty$

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example**: \(Z(Q^{pq r}) \), \(Q^{pq r} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)} \)

- **\(SU(3) \)-structure only** for \(p = \pm q \), \(q = \pm r \). W.l.o.g. take \(Q^{111} \)

- **G-inv. cond.** \(\implies \) 7 real fields \(\phi_1, ..., \phi_7 \)

- **Gauss-law constraint** \(\implies \phi_5 \sim \phi_1, \phi_6 \sim \phi_2, \phi_7 \sim \phi_3 \)

- and \(\phi_1^2 = \phi_2^2 = \phi_3^2 \) (uninteresting) or \(\phi_4 = (2\lambda + 3)/(2\sqrt{2}) \)

- Remaining dynamics in \(\phi_1, \phi_2, \phi_3 \) **decouples**, e.g.

\[
\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \phi_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_7^\pm)^2 \right)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}
\]

- 3-vector of independent **rescaled** \(\phi^4 \) kinks-/anti-kinks

\[
\phi = c_7^\pm \begin{pmatrix}
\pm \tanh \left[\frac{c_7^\pm}{2}(\tau - \tau_{0,1}) \right] \\
\pm \tanh \left[\frac{c_7^\pm}{2}(\tau - \tau_{0,2}) \right] \\
\pm \tanh \left[\frac{c_7^\pm}{2}(\tau - \tau_{0,3}) \right]
\end{pmatrix}
\]

- Interpolates between \((\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)\) as \(\tau \to \pm \infty \)

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)):

- **2nd example**: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$
- $SU(3)$-structure only for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}
- G-inv. cond. \implies 7 real fields ϕ_1, \ldots, ϕ_7
- Gauss-law constraint \implies $\phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$
- and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$
- Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 decouples, e.g.

$$\mathcal{L} = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} (\phi_\alpha^2 - (c_7^{\pm})^2)^2 \right\}, \quad c_7^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent *rescaled* ϕ^4 kinks-/anti-kinks

$$\phi = c_7^{\pm} \begin{pmatrix} \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

- Interpolates between $(\pm c_7^{\pm}, \pm c_7^{\pm}, \pm c_7^{\pm})$ as $\tau \to \pm \infty$
- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example:** $Z(\mathcal{Q}_{pqr})$, $Q_{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

 - $SU(3)$-structure **only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q_{111}^{111}

 - G-inv. cond. \implies 7 real fields ϕ_1, ..., ϕ_7

 - Gauss-law constraint $\implies \phi_5 \sim \phi_1$, $\phi_6 \sim \phi_2$, $\phi_7 \sim \phi_3$

 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

 - Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

$$L = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_\alpha^2 + \frac{1}{8} \left(\phi_\alpha^2 - (c_7^\pm)^2 \right)^2 \right\}, \quad c_7^\pm := \sqrt{9 \pm 2\sqrt{15}}$$

- 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

$$\phi = c_7^\pm \begin{pmatrix} \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^\pm}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

- Interpolates between $(\pm c_7^\pm, \pm c_7^\pm, \pm c_7^\pm)$ as $\tau \to \pm \infty$

- Finite energy (physically allowed)
Non-trivial multi-field solution II ([AH (2016)]):

- **2nd example**: $Z(Q^{pqr})$, $Q^{pqr} = \frac{SU(2) \times SU(2) \times SU(2)}{U(1) \times U(1)}$

 - **$SU(3)$-structure only** for $p = \pm q$, $q = \pm r$. W.l.o.g. take Q^{111}

 - **G-inv. cond.** \Rightarrow 7 real fields ϕ_1, \ldots, ϕ_7

 - **Gauss-law constraint** $\Rightarrow \phi_5 \sim \phi_1, \phi_6 \sim \phi_2, \phi_7 \sim \phi_3$

 - and $\phi_1^2 = \phi_2^2 = \phi_3^2$ (uninteresting) or $\phi_4 = (2\lambda + 3)/(2\sqrt{2})$

 - Remaining dynamics in ϕ_1, ϕ_2, ϕ_3 **decouples**, e.g.

 $$L = \sum_{\alpha=1}^{3} \left\{ \frac{1}{2} \dot{\phi}_{\alpha}^2 + \frac{1}{8} \left(\phi_{\alpha}^2 - (c_7^{\pm})^2 \right)^2 \right\}, \quad c_7^{\pm} := \sqrt{9 \pm 2\sqrt{15}}$$

 - 3-vector of independent **rescaled** ϕ^4 kinks-/anti-kinks

 $$\phi = c_7^{\pm} \begin{pmatrix} \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,1}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,2}) \right] \\ \pm \tanh \left[\frac{c_7^{\pm}}{2} (\tau - \tau_{0,3}) \right] \end{pmatrix}$$

 - Interpolates between $(\pm c_7^{\pm}, \pm c_7^{\pm}, \pm c_7^{\pm})$ as $\tau \to \pm \infty$

 - **Finite energy** (physically allowed)
Summary

1. Higher-dim. **YM instantons** obey $*F = -F \wedge *Q_M$
2. Higher-dim. **YM theory w/ torsion**: $D *F + F \wedge *H = 0$
3. Both arise naturally in S.T. together with G-structure
4. Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$-str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^n w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G/H +$ domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])
Summary

1. Higher-dim. **YM instantons** obey $\ast F = -F \wedge \ast Q_M$

2. Higher-dim. **YM theory w/ torsion**: $D \ast F + F \wedge \ast H = 0$

3. Both arise naturally in S.T. together with G-structure

4. Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$-str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^n w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G/H +$ domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])
Summary

1. **Higher-dim. YM instantons** obey $\ast F = -F \wedge \ast Q_M$
2. **Higher-dim. YM theory w/ torsion:** $D \ast F + F \wedge \ast H = 0$
3. **Both arise naturally** in S.T. together with G-structure
4. Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$-str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in \mathbb{R}^n w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G/H +$ domain wall structure (?)
 (analog of [AH, Lechtenfeld, Musaev (2014)])
Summary

1. Higher-dim. **YM instantons** obey $\ast F = - F \wedge \ast Q_M$
2. Higher-dim. **YM theory w/ torsion**: $D \ast F + F \wedge \ast H = 0$
3. **Both arise naturally** in S.T. together with **G-structure**
4. Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$-str.:
 - (1) reduces to **gradient flow eqs**
 - (2) reduces to **Newtonian mechanics of pt. particle** moving in \mathbb{R}^n w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G/H + \text{domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])}$
Summary

1. Higher-dim. **YM instantons** obey $\ast F = - F \wedge \ast Q_M$
2. Higher-dim. **YM theory w/ torsion**: $D \ast F + F \wedge \ast H = 0$
3. **Both arise naturally** in S.T. together with **G-structure**
4. Studied on $Z(G/H) = \mathbb{R} \times G/H$. G/H: 7d, $G_2/SU(3)$-str.:
 - (1) reduces to **gradient flow eqs**
 - (2) reduces to **Newtonian mechanics of pt. particle** moving in \mathbb{R}^n w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit **S.T. embeddings**. Promising candidate: het SUGRA w/ $\mathbb{R}^{1,1} \times \mathbb{R} \times G/H +$ domain wall structure (?) (analog of [AH, Lechtenfeld, Musaev (2014)])
Summary

1. Higher-dim. YM instantons obey \(\ast F = -F \wedge \ast Q_M \)
2. Higher-dim. YM theory w/ torsion: \(D \ast F + F \wedge \ast H = 0 \)
3. Both arise naturally in S.T. together with G-structure
4. Studied on \(Z(G/H) = \mathbb{R} \times G/H \). \(G/H \): 7d, \(G_2/SU(3) \)-str.:
 - (1) reduces to gradient flow eqs
 - (2) reduces to Newtonian mechanics of pt. particle moving in \(\mathbb{R}^n \) w/ quartic potential (+ constraints)
 - found plethora of new numerical & analytical solutions

Open Problems & WIP

- Other cosets, ansätze, corners of param./field space, ...
- Find explicit S.T. embeddings. Promising candidate: het SUGRA w/ \(\mathbb{R}^{1,1} \times \mathbb{R} \times G/H + \text{domain wall} \) structure (?) (analog of \([AH, Lechtenfeld, Musaev (2014)]\))
Thank you for your attention.