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Conclusions

Motivation
Yang-Mills instantons in d = 4
Yang-Mills instantons in d > 4

In the low-energy limit, heterotic string theory yields N = 1,
d = 10 supergravity coupled to super Yang-Mills theory

In phenomenological applications, one often considers “string
compactifications”: M10 =M10−n × Xn

Of particular interest are solutions that preserve some amount
of supersymmetry

Condition of SUSY preservation leads to appearance of
higher-dim. YM-instantons and G -structure manifolds

Overarching aim(s):

1 construct new instanton/YM solutions on various
G -structure manifolds

2 find embeddings into string theory (het. SUGRA)

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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Definition

A Yang-Mills instanton is a gauge connection∗) on Euclidean M4,
whose curvature F is self-dual, i.e. ∗F = F .

∗)connection A∇ on a principal K -bundle overM4 (gauge group K)
[Belavin, Polyakov, Schwarz, Tyupkin (1975); Atiyah, Hitchin, Singer (1977); Atiyah, Drinfeld, Hitchin, Manin (1977), . . .]

Properties

Solutions of YM-eq. (0
BI
= DF = D ∗ F =⇒ D ∗ F = 0)

1st order eq. easier to solve than 2nd order YM-eq.

1st ex: BPST instanton (1975) for M = R4, K = SU(2)

Widespread applications in maths & physics

classification of 4-manifolds (e.g. Donaldson invariants)

learn about structure of YM-vacuum (crit. pts. of
YM-action; appear in path int. as leading qu. corr.)

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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Definition

In higher dimensions, the instanton equation is generalized to

∗F = −F ∧ ∗QM ,

with some globally well-defined 4-form QM.

[Corrigan, Devchand, Fairlie, Nuyts (1983); Ward (1984), . . .]

Properties

Need additional structure on M to have QM ↔ G -structure
manifolds (i.e. struct. grp. G ⊂ SO(d), e.g. SU(3) in d = 6)

Instanton eq. =⇒ YM with torsion D ∗ F + F ∧ ∗H = 0.
Torsion 3-form ∗H := d ∗QM (ordinary YM if QM co-closed).
H appears naturally in string theory (curvature of NS 2-form)

Alternative defs (in many phys. applic.: 3 defs. equivalent)

F · ε = 0 (BPS eq. in string theory)

F ∈ g (i.e. F ∈ Γ(gM⊗ End(E )), often in math. lit)

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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G2- & Spin(7)-structures
Set-up
Solutions: old & new

Scope of rest of talk

Find explicit solutions of instanton eq. and YM-eq. w/ torsion on
“cylinder” Z (G/H) := R× G/H.

G/H is a 7d compact coset space w/ G2- or SU(3)-structure

Cylinder metric: g = dτ ⊗ dτ + δabe
a ⊗ eb (a, b = 1, . . . , 7)

{eµ} = {e0 = dτ, ea} is a local ONB of T ∗(R× G/H)

Why coset spaces? → simple non-triv. examples of
G -structure manifolds (eqs. manageable)

Why cylinders? → reduce to ODEs (gradient flow eqs.) in τ
Further motivation

Soln in gauge sector of heterotic flux compactifications
(as e.g. in [AH, Lechtenfeld, Musaev (2014)])
Fill a gap in literature on higher-dim YM instantons
[Lechtenfeld, Bauer, Bunk, Geipel, Gemmer, Harland, Ivanova, Lubbe,

Nölle, Popov, Rahn, Sperling, Tormählen, AH, ... (2009–...)]

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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G2- & Spin(7)-structures
Set-up
Solutions: old & new

7d G2-structures:

G2-str. def. by 3-form P (Hodge dual 4-form Q := ∗7P)

G2-structures distinguished/classified by 4 torsion classes:

dP = τ0Q + 3 τ1 ∧ P + ∗7τ3 , dQ = 4 τ1 ∧ Q + τ2 ∧ P

Important examples:

Type TCs Properties

parallel ∅ dP = 0, dQ = 0
nearly parallel τ0 dP = τ0 Q, dQ = 0

cocalibrated/semi-p. τ0 ⊕ τ3 dP = τ0 Q + ∗7τ3, dQ = 0

8d Spin(7)-structures:

Z (G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ

Ψ = P ∧ dτ − Q

Spin(7)-structures distinguished by 2 torsion classes

Dictionary: 7d G2-structures ↔ Spin(7)-structures on cyl.
e.g. 7d loc. conf. G2-str. → 8d loc. conf. Spin(7)-str. on cyl.

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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G2-str. def. by 3-form P (Hodge dual 4-form Q := ∗7P)

G2-structures distinguished/classified by 4 torsion classes:

dP = τ0Q + 3 τ1 ∧ P + ∗7τ3 , dQ = 4 τ1 ∧ Q + τ2 ∧ P

Important examples:

Type TCs Properties

parallel ∅ dP = 0, dQ = 0
nearly parallel τ0 dP = τ0 Q, dQ = 0

cocalibrated/semi-p. τ0 ⊕ τ3 dP = τ0 Q + ∗7τ3, dQ = 0

8d Spin(7)-structures:

Z (G/H) inherits Spin(7)-str. def. by self-dual 4-form Ψ

Ψ = P ∧ dτ − Q

Spin(7)-structures distinguished by 2 torsion classes

Dictionary: 7d G2-structures ↔ Spin(7)-structures on cyl.
e.g. 7d loc. conf. G2-str. → 8d loc. conf. Spin(7)-str. on cyl.
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YM theory & instantons on 8d Z(G/H)

Conclusions

G2- & Spin(7)-structures
Set-up
Solutions: old & new

Back to YM theory on Z (G/H)

“Natural” G -invariant ansatz on Z (G/H):

A = e i Ii + eaXa(τ) (temporal gauge: no dτ term)

[Bauer, Ivanova, Lechtenfeld, Lubbe (2010); . . .]

Notation:

Lie algebra decomposes: g = h⊕m (m↔ G/H)
Lie algebra generators of g split: {IA} = {Ii} ∪ {Ia}
Lie algebra:

[Ii , Ij ] = f kij Ik , [Ii , Ia] = f bia Ib, [Ia, Ib] = f iabIi + f cabIc

Xa(τ) ∈ g and {e i = e iae
a} LI 1-forms on G/H dual to {Ii}

G -invariance condition:

[Ii ,Xa] = f biaXb

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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YM theory & instantons on 8d Z(G/H)

Conclusions

G2- & Spin(7)-structures
Set-up
Solutions: old & new

Specialize to M = Z (G/H) and 7d G/H having G2-structure

Consider Spin(7)-instantons (QM = Ψ = ∗Ψ):

∗F = −F ∧Ψ

Insert ansatz for A (note ˙(·) := d
dτ (·)):

Ẋa + 1
2Pa

bc
(
f ibc Ii + f dbcXd − [Xb,Xc ]

)
= 0

Can’t be solved in general (depends on choice of f ABC )!

Single field reduction Xa(τ) = φ(τ)Ia — common sol. ∀G/H
w/ additional assumptions on f ABC :

φ̇ = ασ
2 φ(φ− 1)

2 static solutions: φ = 0, 1.
Interpolating tanh-kink:

φ(τ) = 1
2

(
1− tanh

[
ασ
4 (τ − τ0)

])
[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
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Conclusions

G2- & Spin(7)-structures
Set-up
Solutions: old & new

Other (known) universal YM-solutions:

Now, consider YM-eq. w/ torsion D ∗ F + F ∧ ∗H = 0

Insert ansatz for A:∑
a

[Xa, Ẋa] = 0 Gauss-law constraint

Ẍa =
(
1
2(facd − Hacd)fbcd − faci fbci

)
Xb

−1
2(3fabc − Habc)[Xb,Xc ]− [Xb, [Xb,Xa]]− 1

2Habc fibc Ii

Single field reduction + other assumptions (H ∝ κP, ...):

φ̈ = 1
2(1 + α)φ(φ− 1)

(
φ− (κ+2)α−1

α+1

)
Newtonian mech. of pt. particle w/ quartic potential
α = 0 → φ4 kink/anti-kink φ = ± tanh τ−τ0

2
(α, κ) = (3/5, 1) → Spin(7)-instantons

[Ivanova, Lechtenfeld, Popov, Rahn (2009)]
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YM theory & instantons on 8d Z(G/H)

Conclusions

G2- & Spin(7)-structures
Set-up
Solutions: old & new

Case-by-case analysis:
Consider multi-field configurations . . .

. . . on cylinders over three 7d cosets with nearly parallel
G2-structure

Berger space SO(5)/SO(3)max

Squashed 7-sphere Sp(2)× Sp(1)/Sp(1)2

(Aloff-Wallach spaces SU(3)/U(1)k,l , cf. also [AH, Ivanova,

Lechtenfeld, Popov (2011); Geipel (2016)])

. . . and on cylinders over four 7d cosets with SU(3)-structure
(SU(3) ⊂ G2, special case of G2-struct.)

(SO(5)/SO(3)A+B)
(Npqr = (SU(3)× U(1))/(U(1)× U(1)))
Mpqr = (SU(3)× SU(2)× U(1))/(SU(2)× U(1)× U(1))
Qpqr = (SU(2)× SU(2)× SU(2))/(U(1)× U(1))

Present some of the new solutions in the following

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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YM theory & instantons on 8d Z(G/H)

Conclusions

G2- & Spin(7)-structures
Set-up
Solutions: old & new

Berger space & squashed S7:

1st step to determine multi-field sol:
solve G -inv. cond. [Ii ,Xa] = f biaXb

Berger space: G -inv. cond. =⇒ Xa = φIa
(back to single field case: nothing new)

Squashed S7: G -inv. cond. =⇒ 2 real fields φ1, φ2
Instanton eq.: φ1 = ±φ2 ≡ ±φ (again, back to old case)
YM-eq. =⇒ 2 branches:

1 “instanton branch” (φ1 = ±φ2 ≡ ±φ)
→ single-field case (Spin(7)-instantons + φ4 (anti-)kink)

2 φ2 = (κ+ 3)/2, φ1(τ) = ±√cκ tanh
[√

cκ
2 (τ − τ0)

]
flat direction + single rescaled φ4 (anti-)kink

Alexander Haupt (U. Hamburg) Spin(7)-instantons & other YM solutions on 8d Z(G/H)
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Non-trivial multi-field solution II ([AH (2016)]):

2nd example: Z (Qpqr ), Qpqr = SU(2)×SU(2)×SU(2)
U(1)×U(1)

SU(3)-structure only for p = ±q, q = ±r . W.l.o.g. take Q111

G -inv. cond. =⇒ 7 real fields φ1, ..., φ7
Gauss-law constraint =⇒ φ5 ∼ φ1, φ6 ∼ φ2, φ7 ∼ φ3
and φ21 = φ22 = φ23 (uninteresting) or φ4 = (2λ+ 3)/(2

√
2)

Remaining dynamics in φ1, φ2, φ3 decouples, e.g.

L =
3∑

α=1

{
1
2 φ̇

2
α + 1

8

(
φ2α − (c±7 )2

)2}
, c±7 :=

√
9± 2

√
15

3-vector of independent rescaled φ4 kinks-/anti-kinks

φ = c±7


± tanh

[
c±7
2 (τ − τ0,1)

]
± tanh

[
c±7
2 (τ − τ0,2)

]
± tanh

[
c±7
2 (τ − τ0,3)

]


Interpolates between (±c±7 ,±c
±
7 ,±c

±
7 ) as τ → ±∞

Finite energy (physically allowed)
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YM theory & instantons on 8d Z(G/H)

Conclusions

Summary

1 Higher-dim. YM instantons obey ∗F = −F ∧ ∗QM
2 Higher-dim. YM theory w/ torsion: D ∗ F + F ∧ ∗H = 0

3 Both arise naturally in S.T. together with G -structure
4 Studied on Z (G/H) = R× G/H. G/H: 7d, G2/SU(3)-str.:

(1) reduces to gradient flow eqs
(2) reduces to Newtonian mechanics of pt. particle moving
in Rn w/ quartic potential (+ constraints)
found plethora of new numerical & analytical solutions

Open Problems & WIP

Other cosets, ansätze, corners of param./field space, ...

Find explicit S.T. embeddings. Promising candidate: het
SUGRA w/ R1,1 × R× G/H + domain wall structure (?)
(analog of [AH, Lechtenfeld, Musaev (2014)])
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Thank you for your attention.
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